数学 - 莫比乌斯反演
_Gion
初中某laji的OIer
展开
-
「学习笔记」莫比乌斯反演
前言(今天入坑莫比乌斯反演,感觉全都是不可做题..)莫比乌斯反演属于数论中较难的部分吧,做这种题一般长片的推导,化简,最后用枚举或者整除分块等求出答案(我做题少只见过这些).下面要引入一些东西做铺垫.数论函数与积性函数首先定义数论函数f(x)f(x)f(x):定义域和值域都是整数的函数.定义积性函数:∀a,b,gcd(a,b)=1∀a,b,gcd(a,b)=1\forall...原创 2018-08-19 19:04:53 · 510 阅读 · 0 评论 -
「BZOJ 2154」Crash的数字表格「莫比乌斯反演」
题目传送门题意求∑ni=1∑mj=1lcm(i,j)∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j),对201010092010100920101009取模题解∑ni=1∑mj=1lcm(i,j)∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j)=∑...原创 2018-08-30 16:13:41 · 279 阅读 · 0 评论 -
「Luogu P2398」GCD SUM「莫比乌斯反演」
题目传送门题意求∑ni=1∑nj=1gcd(i,j)∑i=1n∑j=1ngcd(i,j)\sum_{i=1}^{n}\sum_{j=1}^{n} gcd(i,j),n<=105n<=105n∑i=1n∑j=1ngcd(i,j)∑i=1n∑j=1ngcd(i,j)\sum_{i=1}^{n}\sum_{j=1}^{n} gcd(i,j)=∑d=1n∑i=1n∑j=1n[g...原创 2018-08-23 14:09:11 · 239 阅读 · 0 评论 -
「Luogu P2257」YY的GCD「莫比乌斯反演」
题目传送门题意求 ∑ni=1∑mj=1[gcd(i,j)isprime]∑i=1n∑j=1m[gcd(i,j)isprime]\sum_{i=1}^{n} \sum_{j=1}^{m} [gcd(i, j)\;is\;prime]题解不妨设n≤mn≤mn \leq m,推一下式子∑i=1n∑j=1m[gcd(i,j)isprime]∑i=1n∑j=1m[gcd(i,j)ispr...原创 2018-08-28 16:34:09 · 278 阅读 · 0 评论 -
「SPOJ 5971」LCMSUM
题目传送门题意求∑ni=1lcm(i,n)∑i=1nlcm(i,n)\sum_{i=1}^{n} lcm(i,n),TTT组询问1≤T≤3×105,1≤n≤1061≤T≤3×105,1≤n≤1061\leq T \leq 3\times 10^5, 1 \leq n \leq 10^6 题解∑i=1nlcm(i,n)∑i=1nlcm(i,n)\sum_{i=1}^{n}...原创 2018-08-31 21:33:49 · 347 阅读 · 0 评论 -
「POI2007」ZAP-Queries「莫比乌斯反演」
题目传送门题意T组询问求,∑i=1a∑j=1b[gcd(i,j)=d]∑i=1a∑j=1b[gcd(i,j)=d]\sum_{i=1}^{a} \sum_{j=1}^{b} [gcd(i, j)=d],T,a,b,d≤5×104T,a,b,d≤5×104T,a,b,d\leq 5 \times 10^4题解不妨设a≤ba≤ba \leq b.∑i=1a∑j=1b[gcd(i...原创 2018-08-29 16:10:11 · 270 阅读 · 0 评论 -
「SDOI 2015」约数个数和「莫比乌斯反演」
题意设d(x)d(x)d(x)为xxx的约数个数,求∑i=1n∑j=1md(ij)\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)∑i=1n∑j=1md(ij)。题解首先有个公式:d(ij)=∑x∣i∑y∣j[gcd(x,y)=1]d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]d(ij)=x∣i∑y∣j∑[gcd(x,y)=1]OIO...原创 2018-10-27 10:41:13 · 439 阅读 · 0 评论