第3周 T2 用TensorFlow实现cifar10数据集图像分类

本文档介绍了如何使用TensorFlow构建并训练一个卷积神经网络(CNN)对cifar10数据集进行图像分类。内容包括导入库、数据归一化、网络结构、模型编译、训练过程及模型评估。通过可视化展示,揭示了模型的过拟合现象。
摘要由CSDN通过智能技术生成

第3周 T2 用TensorFlow实现cifar10数据集图像分类

导入必要的库

这一步比较基础, 按需求导入即可

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np

设置CPU

我电脑没有GPU,只能设置成CPU跑, 实测下来训练一个epoch需要70多秒, 15年的老笔记本了。

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

导入数据cifar10数据

没啥可说的

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

归一化

train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape, train_labels.shape, test_images.shape, test_labels.shape

可视化

class_names = ['airplane', 'automobile
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值