【文献速递】Nature Metabolism评论在代谢组学中避免滥用通路分析

2025年4月10日,不列颠哥伦比亚大学Tao Huan团队和罗格斯大学Xiaoyang Su团队联合在nature metabolism(IF:19.2)上发表了题为“Metabolites are not genes—avoiding the misuse of pathway analysis in metabolomics”的评论性论文。

QQ20250428-100251.png

通路分析是一种用于组学数据解读的基础技术,最初是为分析高通量的基因表达数据开发的,后来被应用于代谢组学。它是了解差异表达基因所调控的生物过程的首选方法。代谢组学是基于质谱分析平台,研究生物样本中全部代谢物的一门学科,通过捕捉基因调控的生化结果对基因组学进行补充。通路分析通过将基因组、蛋白质组和代谢组数据映射到显著变化的通路上,实现多组学整合,为从系统层面的理解生物过程提供视角。然而,由于代谢物具有独特性和限制性,导致代谢组学中的通路分析常常会产生误导性或无意义的结果。

代谢组通路分析存在的问题

代谢变化是通路失调的重要指标,但文献中许多代谢组学通路分析存在错误或误导性结论。例如,某些研究仅根据尿样中氨基酸水平的变化,就报道氨基酰-tRNA或氨基酸生物合成通路失调,而尿液中根本不存在这些代谢所需的酶。从生物学角度而言,尿液中氨基酸水平升高可能表明饮食蛋白质摄入量变化或肾脏重吸收功能受损,这些生理变化很难通过通路分析来揭示。

问题背后的原因

1)转录本通常是协同调控的,但代谢物可能并非如此

基因表达是由关键转录因子调控的,并且在转录机制的协同作用下多个mRNA可以同时合成,导致基因表达水平高度相关。而代谢物通常以线性代谢途径依次生成,下游代谢物以上游代谢物作为反应底物来合成,导致代谢物水平变化的一致性低于基因表达。代谢通路上调可能仅体现在终产物,而中间代谢物并无显著变化。此外,代谢通路通常仅通过少数限速步骤来调控(图 1a)。

2)代谢物在体内不断循环,并会迅速转运至其合成位点以外的部位

代谢物的浓度可能无法反映其原位代谢活性,因为很多代谢产物可以迅速被转运至合成部位之外。这类代谢物被称为循环代谢物,如氨基酸、葡萄糖、三羧酸循环代谢物,其通路活性增强和代谢物产量增加可能被代谢物的高输出率所掩盖(图1b)。代谢物还常在器官、组织和体液间循环交换(图1c)。当代谢物被转运至具有相同活性通路的其他部位时,外源性代谢物会掩盖局部合成信号,增加通路活性判断的难度。

3)代谢物的变化可由于多个代谢途径共同导致

代谢途径之间并非彼此独立,不同代谢途径可能共同作用生成某一个代谢物,如丙酮酸既可通过糖酵解产生,也可通过丙氨酸的转基作用生成(图1d)。代谢物的浓度是其合成与代谢过程中多个基因与蛋白质的共同作用结果。因此,仅凭代谢物浓度推断通路调控是否异常往往十分困难。

4)代谢组学中的生物信息学工具存在局限性

代谢组学通路生信分析首先缺乏全面的参考通路数据库,除模式生物外,许多生物体缺乏完善的代谢通路信息,在模式生物中,对不同疾病状态下的代谢活动和代谢途径的认知仍存在巨大空白。这一问题因代谢物的功能在持续被探索与注释而变得更加复杂。除了代谢通路外,代谢物还参与遗传调控和信号传导途径,但这些尚未整合到代谢组学的通路分析中。此外,一些代谢通路具有明确的组织特异性,但在现有的分析工具中很少考虑这一点。如糖异生和酮体生成主要发生在肝脏,而酮体分解代谢仅在肝外组织进行。

5)代谢物检测与注释存在技术挑战

基于质谱的代谢组学方法在检测与注释方面存在局限性。许多内源性代谢物属于中间代谢产物,在生物合成途径中浓度极低,导致代谢物浓度范围极广,可跨越九个数量级。尽管质谱平台具有较高的灵敏度和通量,但仍难以捕获全部代谢物,特别是低丰度的中间代谢物(图1e)。

非靶向代谢组学过度依赖自动化数据处理而缺乏人工验证,容易受到离子源碎裂、人为干扰、背景噪音等因素干扰,从而造成错误注释,进而影响通路显著性分析的准确性。代谢物结构的微小变化即可能导致完全不同的生物学功能。MS/MS可能无法区分同分异构体,尤其是结构异构体和立体异构体,从而导致假阳性的结果。

图1 代谢组学中通路分析存在问题的5个原因(Lee et al., 2025)。

改进代谢组学通路分析质量的建议

1)严格代谢物注释:从分析化学角度出发,研究者必须遵循严格的代谢物注释标准,避免将未经验证的代谢特征当作代谢物纳入通路分析。

2)了解生物背景:需对生物样本类型等背景有深入了解,并建议与生物学家合作,确保结果的合理性。

3)进行生物学验证:在得出代谢通路显著变化的结论之前,应进行生物验证,如检测相关基因或蛋白质的活性。

4)代谢流分析:该方法可提供关于基因活性与代谢通路状态直接的证据。

5)跨领域合作:实验科学家和生物信息学家之间的合作至关重要。

6)开发新的算法:生物信息学方面需要开发新算法,以适应代谢物的独特性。

参考文献

1.Kil Sun Lee, Xiaoyang Su, Tao Huan. Metabolites are not genes — avoiding the misuse of pathway analysis in metabolomics[J]. nature metabolism, 2025.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值