从经典案例看转录组+代谢组在疾病研究中的思路

近年来,随着高通量测序技术质谱技术的飞速发展,转录组+代谢组联合分析已成为揭示疾病分子机制和挖掘临床诊疗靶点的重要工具,为临床研究提供了全新的视角。疾病的发病机理及病程发展极其复杂,基因突变、基因表达水平的变化、代谢的改变等诸多因素都在影响着生命体特征的改变。单一组学的数据难以系统多方面地解析复杂生理过程的调控机制,也很难发出高分文章了。多组学联合分析,不仅可以相互验证,减少单一组学分析的局限性和假阳性,而且可以系统全面地解析分子功能和调控机制。转录组从基因RNA表达水平揭示调控网络,代谢组则直接反映生物体内代谢产物的变化,转录组+代谢组联合分析可筛选出和疾病变化相关的潜在关键基因、代谢物和代谢通路,从而更好地挖掘疾病的转录调控机制。

01研究思路

转录组+代谢组在疾病研究中的思路,首先是构建模型材料或直接收集相关样本,然后分别进行转录组和代谢组检测,接下来将2个组学进行关联分析,利用基因和代谢物的表达水平、富集通路等信息,筛选共同变化的基因、代谢物及代谢通路,从而解析疾病的转录调控机制。最后还可结合一些分子实验进一步验证疾病的转录调控机制。详细如下:

图1 转录组+代谢组在疾病研究中的思路。

1、收集样本

根据研究目的选择相应的样本,如疾病患者和健康对照组的组织、血清、血浆、细胞、体液等。有些研究样本无法直接获得,则需要构建模型材料,如治疗组样本。

2、转录组分析

提取样品中的RNA,并通过高通量测序技术,对样本中的RNA进行鉴定和定量,结合PCA、差异基因筛选、KEGG富集等生信分析,可寻找与病变相关的基因及代谢通路。

3、代谢组检测

提取样本中的代谢产物,并通过色谱、质谱分析,对样本中的代谢物进行定性和定量,结合PCA、差异代谢物筛选、KEGG富集等生信分析,可寻找与病变相关的代谢物及代谢通路。

4、联合分析

转录组和代谢组的联合分析主要分为两大部分,一是寻找共同的KEGG通路和富集功能;二是进行相关性的关联分析。将差异基因和差异代谢物在KEGG上共同富集的基因和代谢物进行联合分析,并计算差异基因和差异代谢物的相关性,构建相关性网络,筛选出共同变化的基因、代谢物及代谢通路,从而解析疾病的转录调控机制。

5、生物学验证

根据联合分析结果,还可结合一些分子实验进一步验证疾病的转录调控机制,如对于转录组结果可进行qRT-PCR验证,非靶向代谢组结果可进行靶向代谢组验证。

02文献案例

标题

2022年2月15日,德克萨斯大学西南医学中心张青教授团队在Cancer Research(IF:12.5)上发表了题为“Integrated Metabolic Profiling and Transcriptional Analysis Reveals Therapeutic Modalities for Targeting Rapidly Proliferating Breast Cancers”的研究性论文。

1、研究背景

乳腺癌是全球女性发病率和死亡率较高的恶性肿瘤。三阴性乳腺癌(TNBC)占所有乳腺癌的15%-20%,是一类缺乏雌激素受体(ER)、孕激素受体(PR)和HER2蛋白表达的乳腺癌。与其他乳腺癌亚型相比,TNBC具有更高的侵袭性、异质性、转移性以及较短生存期。由于TNBC缺乏有效的治疗靶点,患者通常只能依靠手术、化疗和放疗,但这些治疗方法的效果不如靶向治疗,因此迫切需要识别TNBC中的新的治疗靶点。此外,目前尚不清楚是否可以根据患者的代谢异常对其进行分层,并设计针对TNBC潜在的代谢治疗策略。

图2 研究流程图(Liao et al., 2022)。

2.研究结果

(1)乳腺癌患者肿瘤和TNBC患者来源的异种移植(PDXs)的代谢分析

分别收集15例TNBC、9例ER+的速冻乳腺癌肿瘤样本,7例来自NOD SCID γ缺陷(NSG)小鼠中生长的2个TNBC PDX模型(WHIM2和WHIM30)的速冻肿瘤样本,进行LC-MS非靶向代谢组学分析(图3A)。在31个肿瘤样本中,共检测到301种代谢物,其中263种在KEGG或HMDB有注释。层次聚类分析发现,7/15的TNBC肿瘤与所有ER+乳腺癌肿瘤聚集在一起(Cluster 1),而所有TNBC PDX肿瘤与8/15的TNBC肿瘤样本聚集在一起(Cluster 2)。转录组测序发现,所有TNBC PDX和9/15的TNBC肿瘤为基底样乳腺癌,且6/9的基底样TNBC与7例基底样PDX都出现在Cluster 2中(图3C),Cluster 1中的所有ER+及部分TNBC肿瘤为luminal或normal-like亚型(图3C)。通过通路富集和拓扑分析,发现富集到49条代谢通路,Cluster 1主要富集于脂质/脂肪酸代谢通路,而Cluster 2显著富集于核苷酸/碳水化合物代谢通路(图3E-I)。

图3 乳腺癌患者和PDXs肿瘤的代谢分析(Liao et al., 2022)。

(2)乳腺癌细胞在体内和体外培养中存在代谢差异

分别选取四株ER阳性和TNBC细胞系,一部分原位植入NSG小鼠,另一部培养于培养皿中,采集其肿瘤组织并进行非靶向代谢组学分析。PCA结果显示样本根据生长条件被明显区分(图4B)。层次聚类分析表明,无论细胞亚型如何,体外与体内培养的细胞系代谢存在显著差异(图4C)。代谢通路分析发现体外培养富集于氨基酸代谢、三羧酸循环及糖酵解/糖异生等通路(图4D);而体内培养富集于核苷酸代谢及部分脂肪酸代谢(图4E),体外培养的细胞中葡萄糖、丙酮酸、2-酮戊二酸、琥珀酸、谷氨酰胺及其他氨基酸显著富集(图4F);而体内培养的细胞中嘧啶和嘌呤核苷酸水平显著更高(图4G)。

图4 乳腺癌细胞在体内和体外培养中存在代谢差异(Liao et al., 2022)。

(3)体内培养的细胞系异种移植模型与患者肿瘤代谢特征相似

对所有样本代谢组学数据全面分析,通过聚类分析,发现体内培养的细胞系及PDX肿瘤的代谢特征更接近患者乳腺癌组织(图5A)。饼图显示ER+细胞、TNBC细胞分别有43种、45种差异代谢物(图5B)。PCA和层次聚类结果显示,ER+与TNBC体内培养细胞之间存在明显分离(图5C、D)。但部分代谢物的丰度在ER+与TNBC亚型之间高度相似,这与患者肿瘤代谢聚类结果一致(图5E、F)。

图5 体内培养的细胞系异种移植模型与患者肿瘤代谢特征相似(Liao et al., 2022)。

(4)代谢组学和转录组学联合分析

基因表达分析,发现前200个差异基因在Cluster 1和Cluster 2肿瘤中高度表达。Luminal A和B样品的脂质/脂肪酸富集较高,且在normal-like和normal样本中更高,而核苷酸/碳水化合物在basal-like样本中富集更高(图6A;B)。联合分析,发现Cluster 2显著富集于细胞分裂、DNA复制、细胞周期及增殖等生物学过程通路(图6E),Cluster 1显著富集于血管生成、激素刺激应答及孕酮反应等通路(图6F)。Kaplan-Meier生存分析,发现Cluster 2高表达的基因与不良预后显著相关(图6G),而Cluster 1高表达的基因预示着更好的预后(图6H)。

图6 患者肿瘤中转录+代谢联合分析(Liao et al., 2022)。

(5)TNBC中嘧啶代谢和谷氨酰胺分解途径升高

进一步分析发现,在Cluster 2 TNBC肿瘤中嘧啶代谢相关基因、谷氨酰胺代谢和转运酶基因上调表达(图7A–E)。体内同位素示踪实验表明,基于嘧啶代谢和谷氨酰胺分解途径在TNBC中是必需的(图7F-M)

图7 TNBC中嘧啶代谢和谷氨酰胺分解升高(Liao et al., 2022)。

(6)TNBC模型中嘧啶和谷氨酰胺代谢的联合靶向研究

用嘧啶生物合成抑制剂Brequinar或谷氨酰胺酶抑制剂CB-839进行功能验证实验,发现其对TNBC细胞系或PDX异种移植物可产生治疗效果。

图8 靶向TNBC细胞系异种移植和PDX模型中嘧啶和谷氨酸代谢的研究(Liao et al., 2022)。

(7)嘧啶代谢抑制与标准化疗的比较

对Brequinar与标准化疗的治疗效果进行比较,发现对于Brequinar治疗,所有模型均敏感,肿瘤体积显著减少,生存期延长(图9B–F)。而对于化疗治疗,只有3个模型是敏感的(图9D-F),2个模型是抗性的。Brequinar治疗比化疗的治疗效果更好,且毒性更小。

图9 嘧啶代谢抑制和标准化疗的比较(Liao et al., 2022)。

3、研究结论

本研究以TNBC、PDX及ER+患者为研究对象,通过非靶代谢组+转录组联合分析、功能验证实验,确定了体内外代表性乳腺癌亚型细胞系的代谢和基因表达特征,发现嘧啶生物合成抑制剂Brequinar可以用于后期TNBC患者的靶向治疗,此外开发了一个公共的交互式数据可视化门户,以促进未来对于乳腺癌的研究。

03小医叨叨

转录组+代谢组联合分析已成为揭示疾病分子机制和挖掘临床诊疗靶点的重要工具,但两者技术原理和数据类型不同,且数据量都较大,如何有效地整合这些数据,挖掘其中潜在关联,是转录组+代谢组联合分析研究亟待解决的问题。我司建立了转录组+代谢组联合分析流程,可以为从事转录组+代谢组研究的科研工作者提供相关服务。

图10 伯远医学转录组+代谢组联合分析服务。

参考文献

1.Chengheng L, Cherise R G, Cheng F, et al. Integrated Metabolic Profiling and Transcriptional Analysis Reveals Therapeutic Modalities for Targeting Rapidly Proliferating Breast Cancers[J]. Cancer Research, 2022, 82(4) : 665-680.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值