kaggle-Porto Seguro's Safe Driver Prediction

本文分享了作者参与kaggle的Porto Seguro's Safe Driver Prediction比赛的经历,包括使用xgboost模型,面对类别不平衡问题的解决策略,以及对gini系数的理解。虽然最终排名遗憾未进入前20%,但作者从中学到模型融合、参数调优和EDA等技巧,并总结了比赛中的教训,如重视本地交叉验证和避免过拟合。
摘要由CSDN通过智能技术生成

Porto Seguro’s Safe Driver Prediction是一道回归预测题,参赛者需要根据数据给出某个保险实例是否会出发赔款的概率。该题有5000+人参加,近期也结赛了。最终我的排名1000+,离前20%只差一点点,有些可惜。不过这一次比赛中还是学到了很多东西。列出参考的notebook链接:

EDA:
Interactive Porto Insights - A Plot.ly Tutorial | Kaggle

该kaggler使用了stacking的方法。第一层模型使用了调参过的三个lgb(lightGBM)模型,第二层使用了logisticRegression进行拟合:
Simple Stacker LB 0.284 | Kaggle
Kaggle机器学习之模型融合(stacking)心得

本次比赛采用了gini系数作为评测指标。事实证明,在比赛中理解评测指标的原理是十分重要的,它能作为模型优化方向的重要参考。gini系数的详细解释:
Gini Coefficient - An Intuitive Ex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值