ZSY的大后台

心有所适,随遇而安

机器学习、数据挖掘相关资源链接(持续补充...)

kaggle社区。全球最大的人工智能比赛社区。比赛众多,且种类难度都有分类。社区中各个比赛下,参赛者会在讨论区积极交流,提供kernel(解决方法)。对初学者也十分友好。 Competitions | Kaggle天池大数据比赛,阿里巴巴主办。很多赛题都来源于企业实际工作中遇到的难题。比赛普遍分...

2017-12-04 15:31:16

阅读数 212

评论数 0

论文列表——NAACL 2019

最近NAACL-2019接收列表出了,列出感兴趣的paper,供之后阅读: 名称 类型 关键字 阅读价值 笔记 Deep Adversarial Learning for NLP tutorial Transfer Learning in Natural Language...

2019-03-06 12:36:36

阅读数 453

评论数 1

论文列表——杂

这篇博文主要是记录平常通过各类渠道(公众号推送、知乎浏览、博客阅读等等)获知的质量较高论文的笔记。可能有各个类别的,可能有几年的经典论文重读,或者是2018年好的科研成果,这里进行简要记录,之后基本都是要单开博文来详细写笔记的。 名称 来源 类型 时间 阅读价值 笔记 An Int...

2019-01-25 19:24:23

阅读数 77

评论数 0

论文列表——EMNLP 2018

EMNLP 2018去年十一月开完会了,又出了很多文章。根据自己的兴趣点选了一些,平常慢慢读,持续更新到这篇博文。这篇博文记录下这些文章的简要笔记,好的文章会标上“TO BE CONTINUED”,之后会再开单独的博文来做笔记。列表如下: 名称 类型 时间 阅读价值 笔记 Impr...

2019-01-25 18:36:47

阅读数 302

评论数 0

论文列表——sentiment analysis

情感分类属于文本分类的一个应用场景,一般都是人(用户)对某些具体事物(商品、事件)表达某些情感。落地场景是很多的。这学期最开始是做stance detection相关的工作,而其中target-specific stance detection和情感分类中的aspect-based sentime...

2019-01-25 17:05:35

阅读数 340

评论数 1

论文列表——stance detection

这学期做了一些和stance detection相关的工作,列出自己阅读论文的列表,部分论文直接列出一些简单的笔记,这些论文可读性不强(方法过于简单,或者论文本身的贡献不在方法上,没有太多记录成笔记的价值…),部分论文会逐步完善,给出简单的阅读笔记。阅读价值评分纯粹是基于自己对于文章的理解,标准包...

2019-01-25 15:44:24

阅读数 148

评论数 0

论文列表——text classification

列出自己阅读的text classification论文的列表,以后有时间再整理相应的笔记。阅读价值评分纯粹是基于自己对于文章的理解,标准包括:动机、方法、数据集质量、实验安排、相关工作等,满分为5。列表如下: 名称 所属会议 类型 时间 阅读价值 Recurrent Convol...

2018-10-04 15:57:01

阅读数 587

评论数 1

论文列表——fake news

列出自己阅读的fake news detection论文的列表,以后有时间再整理相应的笔记。阅读价值评分纯粹是基于自己对于文章的理解,标准包括:动机、方法、数据集质量、实验安排、相关工作等,满分为5。列表如下: 名称 所属会议 类型 时间 阅读价值 “Liar, Liar Pant...

2018-10-04 15:28:27

阅读数 827

评论数 1

笔记(总结)-注意力机制(Attention)简述

本篇主要针对注意力(Attention)机制进行简要描述。Attention是为了解决Sequence-to-Sequence中的一些问题而提出的,本身的逻辑十分简洁。Attention的产生过程反映了解决问题的一种最直接的思路,正如Resnet中提出“残差”的概念一样,简单直接的就能解决问题,而...

2018-07-20 09:33:52

阅读数 886

评论数 0

笔记(总结)-序列标注问题与求解

在讲述了大量的概率图模型后,本篇介绍下它发挥作用的主要场景——序列标注(Sequence Labaling)。序列包括时间序列以及general sequence,但两者无异。连续的序列在分析时也会先离散化处理。常见的序列有如:时序数据、本文句子、语音数据、等等。常见的序列问题有: 拟合、预测...

2018-07-18 10:52:30

阅读数 1734

评论数 0

笔记(总结)-从马尔可夫模型到条件随机场-3

本篇紧接上篇笔记(总结)-从马尔可夫模型到条件随机场-2,讲述条件随机场(Conditional Random Field)。 条件随机场 定义 先给出几个相关概念的定义。 随机场:可看成是一组随机变量的集合(这组随机变量对应同一个样本空间)。这些随机变量之间可能有依赖关系...

2018-07-14 16:28:30

阅读数 239

评论数 0

笔记(总结)-从马尔可夫模型到条件随机场-2

本篇紧接上篇笔记(总结)-从马尔可夫模型到条件随机场-1,讲述最大熵模型(Maximum Entropy Model)。 最大熵模型 先来简单介绍下熵的概念,看看为什么要“最大熵”建模。 熵用来度量随机变量的不确定性。即熵越大,不确定性越大。 举个例子,给定一个骰子,问抛出去后...

2018-07-13 21:13:30

阅读数 155

评论数 0

笔记(总结)-从马尔可夫模型到条件随机场-1

本篇针对概率图模型做一个总结。顺序依次为: 马尔可夫模型(Markov Model,下称MM)⟹⟹\Longrightarrow 隐马尔可夫模型(Hidden Markov Model,下称HMM) 最大熵模型(Maximum Entropy Model,下称MEM)⟹⟹\Longright...

2018-07-12 10:36:23

阅读数 647

评论数 0

笔记(总结)-循环神经网络

起源 全连接神经网络能够很好地拟合复杂的样本特征,卷积神经网络能很好地建模局部与全局特征的关系。但它们都只能处理定长的输入、输出,而自然语言的处理对象一般是变长的语句,句子中各元素出现的顺序先后暗含着时序关系,循环神经网络(Recurrent Neural Network,下称RNN)能够较好地...

2018-07-11 22:25:49

阅读数 139

评论数 0

笔记(总结)-卷积神经网络

神经网络是一棵根深叶茂的大树,有过许多果实,可是都略显青涩,无法摘食。直到2010年后,这棵大树才真正可谓硕果累累,其中最璀璨甘甜的就是卷积神经网络(Convolutional Neural Network,下称CNN)。在这之后,神经网络再次成为科研界的热点,在这个数据和算力初具规模的时代,神经...

2018-07-11 09:47:21

阅读数 113

评论数 0

笔记(总结)-神经语言模型和词向量

之前笔记(总结)-统计语言模型主要介绍了统计语言模型。可以看到,最终对句子的建模为(以二元文法为例): P(S)=p(w1)p(w2|w1)...p(wn|wn−1)P(S)=p(w1)p(w2|w1)...p(wn|wn−1)P(S)=p(w_1)p(w_2|w_1)...p(w_n|w_{n...

2018-07-09 16:15:36

阅读数 1053

评论数 0

笔记(总结)-统计语言模型

在自然语言处理的相关问题中,如何表示句子是建模分析的关键。与传统的图像、音频等天然可转化为计算机编码的元素不同,自然语言需要经过复杂编码才能被计算机识别。并且,这种编码是机械式的简单排列,设计初衷是为了解决自然语言的存储问题,编码本身不带有任何语言层面的信息。因此,直接使用自然语言的编码对文字进行...

2018-07-09 11:34:35

阅读数 223

评论数 0

笔记-图嵌入(Graph Embedding)

图嵌入(Graph Embedding,也叫Network Embedding)是一种将图数据(通常为高维稠密的矩阵)映射为低微稠密向量的过程,能够很好地解决图数据难以高效输入机器学习算法的问题。知识图谱属于异构图数据,即节点与边不只一种类型。了解图嵌入能帮助理解图数据的处理过程,拓展思考问题的思...

2018-06-29 14:26:37

阅读数 6190

评论数 0

笔记-文本分类

文本分类是NLP领域最基本的应用场景,现实生活中很多问题都能划归为文本分类问题,诸如垃圾邮件分类、有害评论检测、新闻主题分类等。学术界里文本分类也是研究热点,从最初的模式识别方法到机器学习方法,再到近年来的深度学习方法,各类新型的算法都会尝试在文本分类上验证效果。而文本分类问题的普遍性也使得其成为...

2018-06-29 14:14:21

阅读数 132

评论数 0

笔记-变分自编码器(Variational Auto Encoder,VAE)

从大数据时代——>人工智能,生活中各场景下的大数据问题都能用大数据+人工智能算法的配方进行求解。诸如分类、回归等有监督学习问题都得到了很好的解决,但监督学习需要大量标注数据,这一限制使得很多场景无法依靠人工智能的红利。因此,无监督学习正慢慢成为研究热点。VAE便是其中的典型代...

2018-06-29 13:42:39

阅读数 273

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭