鲸鱼算法优化的ELMAN回归预测方法及MATLAB实现
在本文中,我们将介绍一种基于鲸鱼算法优化的ELMAN回归预测方法,并提供相应的MATLAB实现代码。ELMAN回归模型是一种常用于时间序列预测的神经网络模型,而鲸鱼算法是一种基于生物鲸鱼行为的优化算法,通过结合二者,我们可以提高ELMAN模型的预测性能。
ELMAN模型是一种反馈神经网络模型,它通过使用上一时刻的隐藏层状态作为输入来捕捉时间序列的动态变化。为了优化ELMAN模型的预测能力,我们将引入鲸鱼算法作为优化方法。
首先,让我们来了解一下鲸鱼算法的基本原理。鲸鱼算法受到鲸鱼觅食行为的启发,其中鲸鱼种群通过合作和竞争的方式来优化解决方案。算法的基本步骤如下:
- 初始化种群:随机生成一组初始解作为种群的个体。
- 评估适应度:根据问题的适应度函数,计算每个个体的适应度值。
- 更新位置:根据一定的策略,更新鲸鱼个体的位置。
- 更新种群:根据更新后的位置,更新整个种群。
- 终止条件:根据预设的终止条件,判断是否满足停止迭代的条件。如果满足,则输出最优解;否则,返回第3步。
接下来,我们将演示如何使用MATLAB实现基于鲸鱼算法优化的ELMAN回归预测方法。
首先,我们需要定义ELMAN模型的网络结构。以下是一个简单的E