鲸鱼算法优化的ELMAN回归预测方法及MATLAB实现

87 篇文章 34 订阅 ¥59.90 ¥99.00
本文探讨了结合鲸鱼算法优化的ELMAN回归预测方法,旨在提升时间序列预测性能。通过MATLAB实现,详细展示了如何构建ELMAN网络以及应用鲸鱼算法优化模型参数。
摘要由CSDN通过智能技术生成

鲸鱼算法优化的ELMAN回归预测方法及MATLAB实现

在本文中,我们将介绍一种基于鲸鱼算法优化的ELMAN回归预测方法,并提供相应的MATLAB实现代码。ELMAN回归模型是一种常用于时间序列预测的神经网络模型,而鲸鱼算法是一种基于生物鲸鱼行为的优化算法,通过结合二者,我们可以提高ELMAN模型的预测性能。

ELMAN模型是一种反馈神经网络模型,它通过使用上一时刻的隐藏层状态作为输入来捕捉时间序列的动态变化。为了优化ELMAN模型的预测能力,我们将引入鲸鱼算法作为优化方法。

首先,让我们来了解一下鲸鱼算法的基本原理。鲸鱼算法受到鲸鱼觅食行为的启发,其中鲸鱼种群通过合作和竞争的方式来优化解决方案。算法的基本步骤如下:

  1. 初始化种群:随机生成一组初始解作为种群的个体。
  2. 评估适应度:根据问题的适应度函数,计算每个个体的适应度值。
  3. 更新位置:根据一定的策略,更新鲸鱼个体的位置。
  4. 更新种群:根据更新后的位置,更新整个种群。
  5. 终止条件:根据预设的终止条件,判断是否满足停止迭代的条件。如果满足,则输出最优解;否则,返回第3步。

接下来,我们将演示如何使用MATLAB实现基于鲸鱼算法优化的ELMAN回归预测方法。

首先,我们需要定义ELMAN模型的网络结构。以下是一个简单的E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值