BZOJ 2138: stone Hall定理 线段树

2138: stone

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 130  Solved: 53
[Submit][Status][Discuss]

Description

话说Nan在海边等人,预计还要等上M分钟。为了打发时间,他玩起了石子。 Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子。每1分钟,Nan会在编号在[Li,Ri]之间的石堆中挑出任意Ki颗扔向大海(好疼的玩法),如果[Li,Ri]剩下石子不够Ki颗,则取尽量地多。为了保留扔石子的新鲜感,Nan保证任意两个区间[Li,Ri]和[Lj,Rj] ,不会存在Li<=Lj & Rj<=Ri的情况,即任意两段区间不存在包含关系。可是,如果选择不当,可能无法扔出最多的石子,这时NN就会不高兴了。所以他希望制定一个计划,他告诉你他m分钟打算扔的区间[Li,Ri]以及Ki。现在他想你告诉他,在满足前i-1分钟都取到你回答的颗数的情况下,第i分钟最多能取多少个石子。

Input

第一行正整数N,表示石子的堆数;第二行正整数x,y,z,P,(1<=x,y,z<=N;P<=500) 有等式A[i]=[(i-x)^2+(i-y)^2+(i-z)^2] mod P;第三行正整数M,表示有M分钟;第四行正整数K[1],K[2],x,y,z,P,(x,y,z<=1000;P<=10000) 有等式K[i]=(x*K[i-1]+y*K[i-2]+z)mod P。接下来M行,每行两个正整数L[i],R[i]。

Output

有M行,第i行表示第i分钟最多能取多少石子。

Sample Input

5
3 2 4 7
3
2 5 2 6 4 9
2 4
1 2
3 5

Sample Output

2
5
5
【样例说明】
石子每堆个数分别为0,5,2,5,0。
第1分钟,从第2到第4堆中选2个;
第2分钟,从第1到第2堆中选5个;
第3分钟,从第3到第5堆中选8个,但最多只能选5个。
【数据范围】
100% N<=40000 M<=N 1<=L[i]<=R[i]<=N A[i]<=500


转自claris


注意一下就是l-1可以==0

为了这个困惑好久


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;

typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=40100;

struct seg_tree{int mx,mn,tagmx,tagmn;}tr[N<<2];

int n,K[N],a[N];

inline void pushup(int k)
{tr[k].mx=max(tr[k<<1].mx,tr[k<<1|1].mx);tr[k].mn=min(tr[k<<1].mn,tr[k<<1|1].mn);}

inline void pushdown(int k)
{
	if(tr[k].tagmn)
	{
		int tmp=tr[k].tagmn;
		tr[k].tagmn=0;
		tr[k<<1].tagmn+=tmp;tr[k<<1].mn+=tmp;
		tr[k<<1|1].tagmn+=tmp;tr[k<<1|1].mn+=tmp;
	}
	if(tr[k].tagmx)
	{
		int tmp=tr[k].tagmx;
		tr[k].tagmx=0;
		tr[k<<1].tagmx+=tmp;tr[k<<1].mx+=tmp;
		tr[k<<1|1].tagmx+=tmp;tr[k<<1|1].mx+=tmp;
	}
}

void build(int k,int l,int r)
{
	if(l==r){tr[k].mx=tr[k].mn=a[l];return ;}
	int mid=(l+r)>>1;
	build(k<<1,l,mid);build(k<<1|1,mid+1,r);
	pushup(k);
}

void modify_mn(int k,int l,int r,int x,int y,int val)
{
	if(l>=x&&r<=y){tr[k].mn+=val;tr[k].tagmn+=val;return ;}
	int mid=(l+r)>>1;pushdown(k);
	if(x<=mid)modify_mn(k<<1,l,mid,x,y,val);
	if(y>mid)modify_mn(k<<1|1,mid+1,r,x,y,val);
	pushup(k);
}

void modify_mx(int k,int l,int r,int x,int y,int val)
{
	if(l>=x&&r<=y){tr[k].mx+=val;tr[k].tagmx+=val;return ;}
	int mid=(l+r)>>1;pushdown(k);
	if(x<=mid)modify_mx(k<<1,l,mid,x,y,val);
	if(y>mid)modify_mx(k<<1|1,mid+1,r,x,y,val);
	pushup(k);
}

int query_mn(int k,int l,int r,int x,int y)
{
	if(x>y)return 0;
	if(l>=x&&r<=y)return tr[k].mn;
	int mid=(l+r)>>1;pushdown(k);
	if(x>mid)return query_mn(k<<1|1,mid+1,r,x,y);
	else if(y<=mid)return query_mn(k<<1,l,mid,x,y);
	else return min(query_mn(k<<1|1,mid+1,r,x,y),query_mn(k<<1,l,mid,x,y));
}

int query_mx(int k,int l,int r,int x,int y)
{
	if(x>y)return 0;
	if(l>=x&&r<=y)return tr[k].mx;
	int mid=(l+r)>>1;pushdown(k);
	if(x>mid)return query_mx(k<<1|1,mid+1,r,x,y);
	else if(y<=mid)return query_mx(k<<1,l,mid,x,y);
	else return max(query_mx(k<<1|1,mid+1,r,x,y),query_mx(k<<1,l,mid,x,y));
}

int main()
{
	n=read();
	register int i,x=read(),y=read(),z=read(),P=read(),l,r,res;
	for(i=1;i<=n;++i)a[i]=a[i-1]+(1ll*(i-x)*(i-x)+1ll*(i-y)*(i-y)+1ll*(i-z)*(i-z))%P;
	build(1,0,n);
	int m=read();
	K[1]=read();K[2]=read();x=read();y=read();z=read();P=read();
	for(i=3;i<=m;++i)K[i]=(1ll*x*K[i-1]+1ll*y*K[i-2]+z)%P;
	for(i=1;i<=m;++i)
	{
		l=read();r=read();
		res=min(query_mn(1,0,n,r,n)-query_mx(1,0,n,0,l-1),K[i]);
		modify_mx(1,0,n,l,n,-res);modify_mn(1,0,n,r,n,-res);
		print(res);puts("");
	}
	return 0;
}
/*
5
3 2 4 7
3
2 5 2 6 4 9
2 4
1 2
3 5

2
5
5
*/

没有更多推荐了,返回首页