【BZOJ2138】stone(线段树,Hall定理)

题面

BZOJ

题解

考虑一个暴力。
我们对于每堆石子和每个询问,显然是匹配的操作。
所以可以把石子拆成 ai a i 个,询问点拆成 Ki K i 个,这样就是每次进行一次二分图的匹配。
当然可以用网络流+线段树优化连边来做,但是这样复杂度太高。

还是回到二分图的匹配问题,我们现在要验证的就是是否存在对于当前询问点的完美匹配。
关于完美匹配,有 Hall H a l l 定理,如果存在完美匹配,假设左侧的点有 |X| | X | 个,那么这些点连向右边的点的点集的并 Y Y ,满足|X||Y|
因为询问点拆开后,每个点的连向右边的点集都是一样的,所以相当于就是 Ki|Y| K i ≤ | Y |
只提取出所有有用的石子,按顺序编号。设 si s i 表示前 i i 堆石子的个数和。
如果存在完美匹配,那么在任意时刻,所有存在于区间[L,R]之内的询问的石子个数的总和 T[L,R] T [ L , R ] 一定小于区间 [L,R] [ L , R ] 之内的石子的总和。
也就是 sRsL1T[L,R] s R − s L − 1 ≥ T [ L , R ] ,发现题目中的性质,任何询问不存在包含关系。
那么我们假设 TLi T L i 表示左端点在 [1,i] [ 1 , i ] 中的询问的总和, TRi T R i 表示右端点在 [1,i] [ 1 , i ] 中的询问的总和。
那么因为 T[L,R]=TRRTLL1 T [ L , R ] = T R R − T L L − 1 ,所以我们也可以很容易的表示出 T T 来。
所以,现在的不等式表达为s[R]s[L1]TR[R]TL[L1]
所以 s[R]TR[R]s[L1]TL[L1] s [ R ] − T R [ R ] ≥ s [ L − 1 ] − T L [ L − 1 ]
f[i]=s[i]TR[i],g[i]=s[i]TL[i] f [ i ] = s [ i ] − T R [ i ] , g [ i ] = s [ i ] − T L [ i ] ,所以是 f[R]g[L1] f [ R ] ≥ g [ L − 1 ]
我们发现,如果从 [L,R] [ L , R ] 区间中拿走若干石头,在不等式中变化的只有 TR[R] T R [ R ]
也就是只有 f[i] f [ i ] 会减小。所以我们能够拿走的数量为 min(K[i],f[R]g[L1]) m i n ( K [ i ] , f [ R ] − g [ L − 1 ] )

对于当前询问区间 [L,R] [ L , R ] ,会对于所有的 x[1,L],y[R,n],[x,y] x ∈ [ 1 , L ] , y ∈ [ R , n ] , [ x , y ] 产生影响
也就是任何包含当前区间的区间也需要满足 Hall H a l l 定理,在本题中也就是 f[y]g[x] f [ y ] ≥ g [ x ]
那么当前步的答案就是所有的 min(K[i],f[y]g[x]) m i n ( K [ i ] , f [ y ] − g [ x ] ) ,那么取后缀 f f 最小值,前缀g最大值即可。
每次拿线段树区间更新一下即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 40040
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n,m,a[MAX],K[MAX],s[MAX];
struct SegMentTree_Max
{
    int t[MAX<<2],tag[MAX<<2];
    void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
    void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
    void Build(int now,int l,int r)
        {
            if(l==r){t[now]=s[l];return;}
            int mid=(l+r)>>1;
            Build(lson,l,mid);Build(rson,mid+1,r);
            t[now]=max(t[lson],t[rson]);
        }
    void Modify(int now,int l,int r,int L,int R,int w)
        {
            if(L<=l&&r<=R){puttag(now,w);return;}
            int mid=(l+r)>>1;pushdown(now,l,r);
            if(L<=mid)Modify(lson,l,mid,L,R,w);
            if(R>mid)Modify(rson,mid+1,r,L,R,w);
            t[now]=max(t[lson],t[rson]);
        }
    int Query(int now,int l,int r,int L,int R)
        {
            if(L>R)return 0;if(L<=l&&r<=R)return t[now];
            int mid=(l+r)>>1,ret=0;pushdown(now,l,r);
            if(L<=mid)ret=max(ret,Query(lson,l,mid,L,R));
            if(R>mid)ret=max(ret,Query(rson,mid+1,r,L,R));
            return ret;
        }
}G;
struct SegMentTree_Min
{
    int t[MAX<<2],tag[MAX<<2];
    void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
    void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
    void Build(int now,int l,int r)
        {
            if(l==r){t[now]=s[l];return;}
            int mid=(l+r)>>1;
            Build(lson,l,mid);Build(rson,mid+1,r);
            t[now]=min(t[lson],t[rson]);
        }
    void Modify(int now,int l,int r,int L,int R,int w)
        {
            if(L<=l&&r<=R){puttag(now,w);return;}
            int mid=(l+r)>>1;pushdown(now,l,r);
            if(L<=mid)Modify(lson,l,mid,L,R,w);
            if(R>mid)Modify(rson,mid+1,r,L,R,w);
            t[now]=min(t[lson],t[rson]);
        }
    int Query(int now,int l,int r,int L,int R)
        {
            if(L>R)return 0;if(L<=l&&r<=R)return t[now];
            int mid=(l+r)>>1,ret=1e9;pushdown(now,l,r);
            if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
            if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
            return ret;
        }
}F;
int main()
{
    freopen("stone.in","r",stdin);
    freopen("stone.out","w",stdout);
    n=read();int X=read(),Y=read(),Z=read(),P=read();
    for(int i=1;i<=n;++i)s[i]=a[i]=(1ll*(i-X)*(i-X)%P+1ll*(i-Y)*(i-Y)%P+1ll*(i-Z)*(i-Z)%P)%P;
    for(int i=1;i<=n;++i)s[i]+=s[i-1];
    m=read();K[1]=read(),K[2]=read(),X=read(),Y=read(),Z=read(),P=read();
    for(int i=3;i<=m;++i)K[i]=(1ll*K[i-1]*X%P+1ll*K[i-2]*Y%P+Z)%P;
    if(!m)return 0;G.Build(1,1,n);F.Build(1,1,n);
    for(int i=1;i<=m;++i)
    {
        int l=read(),r=read();
        K[i]=min(K[i],F.Query(1,1,n,r,n)-G.Query(1,1,n,1,l-1));
        F.Modify(1,1,n,r,n,-K[i]);G.Modify(1,1,n,l,n,-K[i]);
        printf("%d\n",K[i]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值