题面
题解
考虑一个暴力。
我们对于每堆石子和每个询问,显然是匹配的操作。
所以可以把石子拆成
ai
a
i
个,询问点拆成
Ki
K
i
个,这样就是每次进行一次二分图的匹配。
当然可以用网络流+线段树优化连边来做,但是这样复杂度太高。
还是回到二分图的匹配问题,我们现在要验证的就是是否存在对于当前询问点的完美匹配。
关于完美匹配,有
Hall
H
a
l
l
定理,如果存在完美匹配,假设左侧的点有
|X|
|
X
|
个,那么这些点连向右边的点的点集的并
Y
Y
,满足
因为询问点拆开后,每个点的连向右边的点集都是一样的,所以相当于就是
Ki≤|Y|
K
i
≤
|
Y
|
只提取出所有有用的石子,按顺序编号。设
si
s
i
表示前
i
i
堆石子的个数和。
如果存在完美匹配,那么在任意时刻,所有存在于区间之内的询问的石子个数的总和
T[L,R]
T
[
L
,
R
]
一定小于区间
[L,R]
[
L
,
R
]
之内的石子的总和。
也就是
sR−sL−1≥T[L,R]
s
R
−
s
L
−
1
≥
T
[
L
,
R
]
,发现题目中的性质,任何询问不存在包含关系。
那么我们假设
TLi
T
L
i
表示左端点在
[1,i]
[
1
,
i
]
中的询问的总和,
TRi
T
R
i
表示右端点在
[1,i]
[
1
,
i
]
中的询问的总和。
那么因为
T[L,R]=TRR−TLL−1
T
[
L
,
R
]
=
T
R
R
−
T
L
L
−
1
,所以我们也可以很容易的表示出
T
T
来。
所以,现在的不等式表达为
所以
s[R]−TR[R]≥s[L−1]−TL[L−1]
s
[
R
]
−
T
R
[
R
]
≥
s
[
L
−
1
]
−
T
L
[
L
−
1
]
设
f[i]=s[i]−TR[i],g[i]=s[i]−TL[i]
f
[
i
]
=
s
[
i
]
−
T
R
[
i
]
,
g
[
i
]
=
s
[
i
]
−
T
L
[
i
]
,所以是
f[R]≥g[L−1]
f
[
R
]
≥
g
[
L
−
1
]
我们发现,如果从
[L,R]
[
L
,
R
]
区间中拿走若干石头,在不等式中变化的只有
TR[R]
T
R
[
R
]
也就是只有
f[i]
f
[
i
]
会减小。所以我们能够拿走的数量为
min(K[i],f[R]−g[L−1])
m
i
n
(
K
[
i
]
,
f
[
R
]
−
g
[
L
−
1
]
)
对于当前询问区间
[L,R]
[
L
,
R
]
,会对于所有的
x∈[1,L],y∈[R,n],[x,y]
x
∈
[
1
,
L
]
,
y
∈
[
R
,
n
]
,
[
x
,
y
]
产生影响
也就是任何包含当前区间的区间也需要满足
Hall
H
a
l
l
定理,在本题中也就是
f[y]≥g[x]
f
[
y
]
≥
g
[
x
]
那么当前步的答案就是所有的
min(K[i],f[y]−g[x])
m
i
n
(
K
[
i
]
,
f
[
y
]
−
g
[
x
]
)
,那么取后缀
f
f
最小值,前缀最大值即可。
每次拿线段树区间更新一下即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 40040
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,a[MAX],K[MAX],s[MAX];
struct SegMentTree_Max
{
int t[MAX<<2],tag[MAX<<2];
void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
void Build(int now,int l,int r)
{
if(l==r){t[now]=s[l];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=max(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,w);return;}
int mid=(l+r)>>1;pushdown(now,l,r);
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
t[now]=max(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L>R)return 0;if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=0;pushdown(now,l,r);
if(L<=mid)ret=max(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=max(ret,Query(rson,mid+1,r,L,R));
return ret;
}
}G;
struct SegMentTree_Min
{
int t[MAX<<2],tag[MAX<<2];
void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
void Build(int now,int l,int r)
{
if(l==r){t[now]=s[l];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=min(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,w);return;}
int mid=(l+r)>>1;pushdown(now,l,r);
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
t[now]=min(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L>R)return 0;if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=1e9;pushdown(now,l,r);
if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
return ret;
}
}F;
int main()
{
freopen("stone.in","r",stdin);
freopen("stone.out","w",stdout);
n=read();int X=read(),Y=read(),Z=read(),P=read();
for(int i=1;i<=n;++i)s[i]=a[i]=(1ll*(i-X)*(i-X)%P+1ll*(i-Y)*(i-Y)%P+1ll*(i-Z)*(i-Z)%P)%P;
for(int i=1;i<=n;++i)s[i]+=s[i-1];
m=read();K[1]=read(),K[2]=read(),X=read(),Y=read(),Z=read(),P=read();
for(int i=3;i<=m;++i)K[i]=(1ll*K[i-1]*X%P+1ll*K[i-2]*Y%P+Z)%P;
if(!m)return 0;G.Build(1,1,n);F.Build(1,1,n);
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
K[i]=min(K[i],F.Query(1,1,n,r,n)-G.Query(1,1,n,1,l-1));
F.Modify(1,1,n,r,n,-K[i]);G.Modify(1,1,n,l,n,-K[i]);
printf("%d\n",K[i]);
}
return 0;
}