【BZOJ2138】stone(线段树,Hall定理)

题面

BZOJ

题解

考虑一个暴力。
我们对于每堆石子和每个询问,显然是匹配的操作。
所以可以把石子拆成 ai a i 个,询问点拆成 Ki K i 个,这样就是每次进行一次二分图的匹配。
当然可以用网络流+线段树优化连边来做,但是这样复杂度太高。

还是回到二分图的匹配问题,我们现在要验证的就是是否存在对于当前询问点的完美匹配。
关于完美匹配,有 Hall H a l l 定理,如果存在完美匹配,假设左侧的点有 |X| | X | 个,那么这些点连向右边的点的点集的并 Y Y ,满足|X||Y|
因为询问点拆开后,每个点的连向右边的点集都是一样的,所以相当于就是 Ki|Y| K i ≤ | Y |
只提取出所有有用的石子,按顺序编号。设 si s i 表示前 i i 堆石子的个数和。
如果存在完美匹配,那么在任意时刻,所有存在于区间[L,R]之内的询问的石子个数的总和 T[L,R] T [ L , R ] 一定小于区间 [L,R] [ L , R ] 之内的石子的总和。
也就是 sRsL1T[L,R] s R − s L − 1 ≥ T [ L , R ] ,发现题目中的性质,任何询问不存在包含关系。
那么我们假设 TLi T L i 表示左端点在 [1,i] [ 1 , i ] 中的询问的总和, TRi T R i 表示右端点在 [1,i] [ 1 , i ] 中的询问的总和。
那么因为 T[L,R]=TRRTLL1 T [ L , R ] = T R R − T L L − 1 ,所以我们也可以很容易的表示出 T T 来。
所以,现在的不等式表达为s[R]s[L1]TR[R]TL[L1]
所以 s[R]TR[R]s[L1]TL[L1] s [ R ] − T R [ R ] ≥ s [ L − 1 ] − T L [ L − 1 ]
f[i]=s[i]TR[i],g[i]=s[i]TL[i] f [ i ] = s [ i ] − T R [ i ] , g [ i ] = s [ i ] − T L [ i ] ,所以是 f[R]g[L1] f [ R ] ≥ g [ L − 1 ]
我们发现,如果从 [L,R] [ L , R ] 区间中拿走若干石头,在不等式中变化的只有 TR[R] T R [ R ]
也就是只有 f[i] f [ i ] 会减小。所以我们能够拿走的数量为 min(K[i],f[R]g[L1]) m i n ( K [ i ] , f [ R ] − g [ L − 1 ] )

对于当前询问区间 [L,R] [ L , R ] ,会对于所有的 x[1,L],y[R,n],[x,y] x ∈ [ 1 , L ] , y ∈ [ R , n ] , [ x , y ] 产生影响
也就是任何包含当前区间的区间也需要满足 Hall H a l l 定理,在本题中也就是 f[y]g[x] f [ y ] ≥ g [ x ]
那么当前步的答案就是所有的 min(K[i],f[y]g[x]) m i n ( K [ i ] , f [ y ] − g [ x ] ) ,那么取后缀 f f 最小值,前缀g最大值即可。
每次拿线段树区间更新一下即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 40040
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n,m,a[MAX],K[MAX],s[MAX];
struct SegMentTree_Max
{
    int t[MAX<<2],tag[MAX<<2];
    void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
    void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
    void Build(int now,int l,int r)
        {
            if(l==r){t[now]=s[l];return;}
            int mid=(l+r)>>1;
            Build(lson,l,mid);Build(rson,mid+1,r);
            t[now]=max(t[lson],t[rson]);
        }
    void Modify(int now,int l,int r,int L,int R,int w)
        {
            if(L<=l&&r<=R){puttag(now,w);return;}
            int mid=(l+r)>>1;pushdown(now,l,r);
            if(L<=mid)Modify(lson,l,mid,L,R,w);
            if(R>mid)Modify(rson,mid+1,r,L,R,w);
            t[now]=max(t[lson],t[rson]);
        }
    int Query(int now,int l,int r,int L,int R)
        {
            if(L>R)return 0;if(L<=l&&r<=R)return t[now];
            int mid=(l+r)>>1,ret=0;pushdown(now,l,r);
            if(L<=mid)ret=max(ret,Query(lson,l,mid,L,R));
            if(R>mid)ret=max(ret,Query(rson,mid+1,r,L,R));
            return ret;
        }
}G;
struct SegMentTree_Min
{
    int t[MAX<<2],tag[MAX<<2];
    void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
    void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
    void Build(int now,int l,int r)
        {
            if(l==r){t[now]=s[l];return;}
            int mid=(l+r)>>1;
            Build(lson,l,mid);Build(rson,mid+1,r);
            t[now]=min(t[lson],t[rson]);
        }
    void Modify(int now,int l,int r,int L,int R,int w)
        {
            if(L<=l&&r<=R){puttag(now,w);return;}
            int mid=(l+r)>>1;pushdown(now,l,r);
            if(L<=mid)Modify(lson,l,mid,L,R,w);
            if(R>mid)Modify(rson,mid+1,r,L,R,w);
            t[now]=min(t[lson],t[rson]);
        }
    int Query(int now,int l,int r,int L,int R)
        {
            if(L>R)return 0;if(L<=l&&r<=R)return t[now];
            int mid=(l+r)>>1,ret=1e9;pushdown(now,l,r);
            if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
            if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
            return ret;
        }
}F;
int main()
{
    freopen("stone.in","r",stdin);
    freopen("stone.out","w",stdout);
    n=read();int X=read(),Y=read(),Z=read(),P=read();
    for(int i=1;i<=n;++i)s[i]=a[i]=(1ll*(i-X)*(i-X)%P+1ll*(i-Y)*(i-Y)%P+1ll*(i-Z)*(i-Z)%P)%P;
    for(int i=1;i<=n;++i)s[i]+=s[i-1];
    m=read();K[1]=read(),K[2]=read(),X=read(),Y=read(),Z=read(),P=read();
    for(int i=3;i<=m;++i)K[i]=(1ll*K[i-1]*X%P+1ll*K[i-2]*Y%P+Z)%P;
    if(!m)return 0;G.Build(1,1,n);F.Build(1,1,n);
    for(int i=1;i<=m;++i)
    {
        int l=read(),r=read();
        K[i]=min(K[i],F.Query(1,1,n,r,n)-G.Query(1,1,n,1,l-1));
        F.Modify(1,1,n,r,n,-K[i]);G.Modify(1,1,n,l,n,-K[i]);
        printf("%d\n",K[i]);
    }
    return 0;
}

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值