分享一个关于介绍TextCNN和TextRNN的文章

博客介绍了理解TextCNN的两幅好图及详细过程原理。输入的词嵌入矩阵获取有static、non - static方法,前者用训练好词向量构成矩阵且不更新,后者随机初始化并更新。更常用的是用训练好的词向量初始化后再fine - tune。还提及CNN、RNN在自动特征提取中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于理解TextCNN的两幅比较好的图

详细过程和原理

其中作为输入的词嵌入矩阵通常可以通过两种方法得到:static的方法和non-static的方法。
static的方法就是直接用word2vec训练好的词向量构成词嵌入矩阵,且后面训练的时候不对其进行更新;而non-static的方法是随机初始化词嵌入矩阵,再在后面训练的时候对其进行更新。还有一种更常用的是用word2vec训练好的词向量初始化,再在后面训练时对其进行fine-tune,就跟图像CNN中对在ImageNet上预训练的模型进行fine-tune一样。

更多内容详见CNN、RNN在自动特征提取中的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值