CAP理论

前言

网上的概念真的是乱,本文的概念来自《大型网站技术架构》。我只是简单地分析记录,详细的自己看书吧!

CAP理论

CAP理论为:一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容忍性(Partition tolerance)这三项中的两项。

1. [高]一致性

数据一致性分为如下几种情况:

  • 数据高一致

    各个副本的数据在物理存储中,始终是一致的。

  • 数据用户一致

    各个副本的数据在物理存储中不一定一致,但当终端用户访问时,通过纠错和校验机制,可确定一个一致且正确的数据返回给用户。

  • 数据最终一致

    各个副本的数据在物理存储中不一定一致,但系统经过一段时间的自我恢复和纠正,最终会达到一致。

CAP理论中的一致性是指数据高一致性。

2. [高]可用性

高可用性数据的概念分为两个部分:

  • 数据持久性

    各种情况下不会出现数据丢失的情况,需要将数据备份多个副本。

  • 数据可访问性

    任何时间,任何应用程序都能够进行读写访问。当访问数据的某一个副本时,副本所在服务器崩溃了,此时需要访问数据的另一个副本,若此过程不能很快完成,则称这段时间内数据是不可访问的。

高可用性所需要达到的标准:4个9(99.99%)。

3. 分区容忍性

系统可以跨网络分区线性伸缩。在实际应用中指的是集群架构和数据具有可伸缩性。可伸缩性是指的是当一套系统性能达到瓶颈时,运维人员可以在不停机的情况下,通过增加服务器数量,来提高系统性能。

### CAP理论的核心概念 CAP理论指出,在分布式系统设计中,无法同时满足 **一致性(Consistency)**、**可用性(Availability)** 和 **分区容错性(Partition Tolerance)** 这三个特性[^1]。这意味着任何分布式系统都必须在这三项之间做出取舍。 #### 一致性和其重要性 在分布式环境中,**一致性**意味着所有的节点在同一时间拥有相同的数据副本。当客户端向任意节点请求数据时,都能获得最新的更新版本。然而,为了实现完全的一致性,可能需要牺牲系统的响应速度或者增加额外的同步开销[^4]。 #### 可用性的定义与挑战 **可用性**是指无论何时何地,只要有一个正常的请求到达系统中的某个健康节点上,那么该节点就应该返回有效结果给用户而不是错误信息或超时等待状态。高可用通常依赖冗余机制来保障服务连续运行即使部分组件失效也能继续工作。 #### 分区容忍度的意义及影响 最后一点也是最基础的要求——即所谓的“P”,代表的是对于网络分割情况下的适应能力或者说抗断连性能(Partition Tolerance)。由于现代互联网架构不可避免存在跨地域部署以及物理链路不稳定等问题,所以几乎所有的实际应用都需要考虑并接受一定程度上的PT约束条件[^2]。 实际上,“strong partition tolerance”被描述成一种非常严格的标准;而回顾CAP定理的发展历程可以发现关于这一术语的确切含义曾经有过不同的解释方向。 综上所述,在构建具体的解决方案之前,工程师们往往先明确业务需求优先级从而决定偏向哪种组合形式:CA(no P), CP(low A) 或 AP(flexible C)。 ```python class DistributedSystem: def __init__(self, consistency=True, availability=True, partition_tolerance=False): self.consistency = consistency self.availability = availability self.partition_tolerance = partition_tolerance def choose_tradeoff(self): if not self.partition_tolerance and all([self.consistency,self.availability]): return 'CA system' elif self.partition_tolerance and not self.availability: return 'CP system' elif self.partition_tolerance and not self.consistency: return 'AP system' ds_example = DistributedSystem(partition_tolerance=True) print(ds_example.choose_tradeoff()) ``` 上述代码片段展示了如何基于不同场景选择合适的CAP模型实例化对象,并判断属于哪一类权衡策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值