本文用于记录本人在《球面天文学和天体力学》的天体力学引论的学习,所以思路会同原书大致相同,但是会加上本人的其他推导与思考,希望能向读者传输一些思想与经验,共同学习共同进步
大致是一周一更,每次更新大致为一节内容
所以,让我们开始吧
开普勒方程展开为时间的函数的公式
我们前文得到了单体与两体运动的轨道方程和运动学方程,为了决定行星在t时的位置,我们需要进行进一步的推理.
在下图中,S为太阳(椭圆焦点),B为行星(或彗星),P为近日点,A为远日点,ABP为该行星的运行轨道,而AB’P为以长轴为直径而绘制的辅助圆。
过B点,做B’Q垂直于AP,其中与辅助圆交于B’。由此就能得到三个角,偏近点角,平近点角,真近点角。
其中偏近点角为∠B’OP,平近点角为∠B’SP,真近点角为∠BSP
根据偏近点角的性质可知
通过观察我们能知道,若想描述行星的位置坐标,偏近点角是格外重要的元素,这给我们一个思路,即求出u随时间t变化的函数,我们便能知道行星位置随时间变化的函数。
从此性质出发,在图中可得以下关系(3-1)
进行整理后可得(3-2)
式3-1和式3-2的一式可以写为如下形式
两式相互加减可得(3-3)
于是可得(3-4)
我们求式3-4的微分可得
整理可得
由式3-3中式一可得,将该关系代入上式可得(3-5)
根据万有引力有心力基本方程可得(3-6)
值得注意的是,式中的并非速度,而是真近点角,即理论力学讨论时常使用的
。
将式3-6代入式3-5便能将替换,可得
积分后得到
这便是我们所需的u随时间t变化的函数,叫做开普勒方程,值得注意的是,其中的为过近日点的时刻,前文提到的平近点角的表达式即为
。这是与行星同时从近日点出发,以匀角速n运动的一点,在t时的真近点角。