《球面天文学和天体力学引论》83.5节

本文用于记录本人在《球面天文学和天体力学》的天体力学引论的学习,所以思路会同原书大致相同,但是会加上本人的其他推导与思考,希望能向读者传输一些思想与经验,共同学习共同进步

大致是一周一更,每次更新大致为一节内容

所以,让我们开始吧

开普勒方程展开为时间的函数的公式

我们前文得到了单体与两体运动的轨道方程和运动学方程,为了决定行星在t时的位置,我们需要进行进一步的推理.

在下图中,S为太阳(椭圆焦点),B为行星(或彗星),P为近日点,A为远日点,ABP为该行星的运行轨道,而AB’P为以长轴为直径而绘制的辅助圆。

过B点,做B’Q垂直于AP,其中与辅助圆交于B’。由此就能得到三个角,偏近点角,平近点角,真近点角。

其中偏近点角为B’OP,平近点角为∠B’SP,真近点角为∠BSP

根据偏近点角的性质可知

x_B=acosu

y_B=bsinu

通过观察我们能知道,若想描述行星的位置坐标,偏近点角是格外重要的元素,这给我们一个思路,即求出u随时间t变化的函数,我们便能知道行星位置随时间变化的函数。

从此性质出发,在图中可得以下关系(3-1)

rcos{v}=acos{u}-c   

rsin{v}=bsin{u}

进行整理后可得(3-2)

                                                                                      

式3-1和式3-2的一式可以写为如下形式

                                                                                

两式相互加减可得(3-3)

                                                

于是可得(3-4)

tan\frac{v}{2}=\sqrt{\frac{1+e}{1-e}}tan\frac{u}{2}

我们求式3-4的微分可得

\frac{dv}{​{cos}^2\frac{v}{2}}=\sqrt{\frac{1+e}{1-e}}\frac{du}{​{cos}^2\frac{u}{2}}

整理可得

\frac{dv}{du}=\sqrt{\frac{1+e}{1-e}}=\frac{​{cos}^2\frac{v}{2}}{​{cos}^2\frac{u}{2}}

由式3-3中式一可得\frac{​{cos}^2\frac{u}{2}}{​{cos}^2\frac{v}{2}}=\frac{r}{a(1-e)}=\frac{​{sin}^2\frac{u}{2}}{​{sin}^2\frac{v}{2}},将该关系代入上式可得(3-5)

dv/du=(a\sqrt(1-e²))/r=sinv/sinu

根据万有引力有心力基本方程可得(3-6)

r² dv/dt=D

值得注意的是,式中的并非速度,而是真近点角,即理论力学讨论时常使用的

将式3-6代入式3-5便能将替换,可得

       \frac{du}{dt}=\frac{2\pi a}{Tr}=\frac{2\pi}{T(1-ecosu)}

积分后得到

u-esinu=(2\pi(t-t_0))/T

这便是我们所需的u随时间t变化的函数,叫做开普勒方程,值得注意的是,其中的为过近日点的时刻,前文提到的平近点角的表达式即为M=\frac{2\pi(t-t_0)}{T}。这是与行星同时从近日点出发,以匀角速n运动的一点,在t时的真近点角。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞎某某Blinder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值