AGA8压缩因子算法C++语言
工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目PAGA8-92DC方程、SGERG-88方程[1]。随后,国际标准化组织于1994年形成了国际标准草案[2]。
AGA8-92DC方程来自美国煤气协会(AGA)。美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。
毕业设计基于python和javascript的智能家庭门卫监护
在我们的系统中,使用了基于 C++的智能视觉算法。开发平台为 Linux 版本的 qtcreator,方便地进行 C++程序地开发。在此基础上,利用了传统机器视觉—OPENCV 的 C++版本,对摄像头的数据进行读取和处理,以便于和 QT 进行配合显示,形成完整的可执行程序。
在人脸检测上,我们的作品采用了 OPENCV 经典算法中的级联分类器方法。同时我们选择了OpenCV 自带的 LBPHFaceRecognizer 算法,这种算法优点是不会受到太多影响,可以在性能不是很高的 ARM 板上也可执行。
在姿态识别上,我们的作品采用了 TensorFlow-Lite 框架。在轻量化推理上来说,非常适合本产品。同时,我们的作品采用了其提供的基于 CoCo 数据集的人体姿态识别 tflite 模型来进行推理,识别准确快速。
系统工作流程大致如下:系统在平常处于正常监控状态,当捕捉到人物出现在视野之中时,通过人脸识别实时判断目标人物的身份。若是不曾录入的人脸则发出报警通过短信形式告知家属,并且会持续一段时间通知。若系统发生了老人摔倒的情况,系统会迅速以短信告知预先存放在系统内的紧急联系人,确
第十二届蓝桥杯单片机第一场省赛
单片机组相对于嵌入式组确实要简单得多。 真的不难呀,大家一定要上手把几个基础模块过一遍,然后做两三套赛题,进决赛都挺容易的,相信我。
这一届的赛题也就中规中矩吧,已经完了前几届赛题的难度,总之这一届的还是偏简单。除了基础的数码管显示,矩阵键盘,LED之外,要是临近比赛,连这些都没有熟悉的画,自己去面壁思过吧。除此之外还考察了PCF8591的DAC功能和DS18B20。要说稍微有点难度的就是矩阵键盘和DS18B20的小数显示了吧,因为可能有些人偷懒根本就没有看过这两个部分。至于PCF8591的DAC相较于ADC简单得多,没有看过的,看一下程序应该就懂了,完整的程序可以参考第三部分。
蓝桥杯C-C++算法练习题
蓝桥杯竞赛练习题的题解(C/C++/Java)
蓝桥杯是中国面向中学生的计算机科学和信息技术竞赛,旨在激发学生对计算机科学的兴趣、培养其创新能力。每年的蓝桥杯比赛都包含了一系列算法题目,涉及数据结构、图论、动态规划、贪心算法等多个领域。
由于蓝桥杯是一场竞赛,具体的题目内容每年都会有所变化,因此题解也会因题目而异。然而,通常可以采用以下一般性的步骤来解决蓝桥杯算法题:
理解题意: 仔细阅读题目,理解问题的要求和约束条件。明确输入和输出的格式,以及可能涉及的算法和数据结构。
设计算法: 根据题目要求,选择合适的算法和数据结构。可能的算法包括搜索、排序、递归、动态规划等,而数据结构则可能涉及数组、链表、树、图等。
编写代码: 使用选定的算法和数据结构,编写能够解决问题的代码。在实现过程中,考虑边界情况和特殊情况,确保代码的正确性。
测试和调试: 编写完代码后,进行测试以确保其在各种情况下都能正确运行。如果发现问题,进行调试并逐步修复错误。
优化和分析: 在保证正确性的前提下,考虑代码的效率和优化空间。分析算法的时间复杂度和空间复杂度,寻找可能的改进点。
提交答案: 将完成并通
点选验证码识别,ubuntu部署版本,详细说明解释
YOLOv5(You Only Look Once version 5)是一种目标检测算法,它是YOLO系列的最新版本。目标检测是计算机视觉领域中的一项任务,其目标是检测图像或视频中存在的对象,并标识它们的位置。
YOLOv5采用了实时性能较好的端到端的目标检测方法。相较于之前的版本,YOLOv5引入了一些改进,提高了检测精度和速度。它通过将输入图像分成较小的网格单元,然后在每个网格单元中预测边界框和类别信息,实现对图像中多个目标的同时检测。
对于成语点选验证码识别,通常是指识别包含成语文字的图像验证码。这种验证码可能将成语文字分散到图像的不同部分,并要求用户点击正确的位置以完成验证。为了应对这种验证码,可以使用YOLOv5来检测图像中的文字位置,并进一步分析以确定正确的点击位置。
在实际应用中,可以将YOLOv5与其他技术结合,例如光学字符识别(OCR)来提高成语文字的准确性,以实现对成语点选验证码的有效识别。
使用 Python+Vue 实现的开源运维平台,前后端分离方便二次开发
使用 Python+Vue 实现的开源运维平台,前后端分离方便二次开发.推送助手是一个集成了电话、短信、邮件、飞书、钉钉、微信、企业微信等多通道的消息推送平台,可以3分钟实现Zabbix、Prometheus、夜莺等监控系统的电话短信报警,点击体验:https://push.spug.cc
批量执行: 主机命令在线批量执行
在线终端: 主机支持浏览器在线终端登录
文件管理: 主机文件在线上传下载
任务计划: 灵活的在线任务计划
发布部署: 支持自定义发布部署流程
配置中心: 支持KV、文本、json等格式的配置
监控中心: 支持站点、端口、进程、自定义等监控
报警中心: 支持短信、邮件、钉钉、微信等报警方式
优雅美观: 基于 Ant Design 的UI界面
开源免费: 前后端代码完全开源
HTTP请求定时任务自动执行框架 base on HAR Editor and Tornado Server
QD 是 一个 基于 HAR 编辑器和 Tornado 服务端的 HTTP 定时任务自动执行 Web 框架。
按 F12 、 Ctrl + Shift + I ,或从 Chrome 菜单中选择 更多工具 > 开发者工具 。
从屏幕底部或右侧打开的面板中,选择 网络 选项卡。
确保 网络 选项卡左上角的 录制 按钮显示为 红色。
如果它是灰色的,单击一下开始录制。
选中 保留日志 旁边的框。Preserve log
单击 清除 按钮以清除 网络 选项卡中的所有现有日志。
现在尝试重现您计划发起的 HTTP 请求。
重现任务后,右键单击网络请求网格上的任意位置。
选择 另存为带内容的 HAR。Save as HAR with Content
将文件保存到您的计算机。
图像分类-python-yolov5-汉字数据集-验证码数据集
包含332个汉字的点选验证码数据集!全是博主手工标注的!可以直接应用于yolov5 图像分类任务。
对应于成语:
出尔反尔|卧薪尝胆|惶恐不安|暗室逢灯|缚鸡之力|抚掌大笑|富贵逼人|断章取义|宠辱不惊|付之东流|福如东海|尺有所短|耻居人下|抽薪止沸|光宗耀祖|蹉跎岁月|奉公守法|管中窥豹|挥金如土|抚心自问|光明磊落|浮云蔽日|赤膊上阵|措手不及|侈侈不休|短小精悍|尺寸之功|抽刀断水|充耳不闻|赤手空拳|踌躇不前|冲口而出|冲昏头脑|苟且偷安|福无双至|挥洒自如|挥汗如雨|狗拿耗子|狗皮膏药|唇红齿白|患难之交|崇洋媚外|话不投机|固若金汤|赤地千里|杜渐防微|黄钟大吕|赤心报国|覆水难收|抽梁换柱|愁眉苦脸|寸草不留|断线风筝|古稀之年|负荆请罪|臭名远扬|愁眉不展|光明正大|臭不可当|丑态毕露|付之一笑|愁肠百结|苟且偷生|愁肠九转|归根到底|齿牙余论|福星高照|光芒万丈|患难与共|回味无穷|恍如隔世|踌躇不决|愁肠寸断|惶惶不安|俯拾皆是|古今中外|焕然一新|光彩夺目|荒无人烟|悔不当初|灰心丧气|回心转意|踌躇满志|孤苦伶仃|富可敌国|回头是岸|回天之力|妇人之仁|釜底抽
后端开发-c-商品库存管理系统
这是一个简单的商品库存管理系统,通过命令行菜单提供了一些基本的功能,包括商品入库、商品出库、删除商品、修改商品、搜索商品和显示商品。用户通过选择菜单项来执行相应的操作。
主要功能包括:
商品入库: 记录新商品的信息,如商品编号、名称、数量等,并将其添加到库存中。
商品出库: 根据用户输入的商品编号和数量,从库存中扣除相应数量的商品。
删除商品: 根据商品编号删除相应的商品信息。
修改商品: 根据商品编号修改相应的商品信息,如名称、数量等。
搜索商品: 根据商品编号或名称搜索相应的商品信息。
显示商品: 将所有商品信息以列表形式显示出来。
需要注意的是,这是一个基于命令行的简单实现,用户通过输入数字来选择不同的功能。在主函数中,通过一个循环不断执行用户选择的功能,直到用户选择退出。整体结构清晰,适合小规模的商品库存管理需求。
数据结构算法-C++-平衡二叉树-各种操作导致的平衡因子和树形状变化
这是一个C++程序,主要实现了平衡二叉树的插入、删除和自动平衡功能。以下是程序的主要功能介绍:
平衡二叉树结点定义:
使用了自定义的 tree_node.h 头文件,其中定义了表示平衡二叉树结点的数据结构。
插入结点:
程序通过 nobalance_insertNode 和 insertNode 函数实现了向平衡二叉树中插入结点的功能。
插入过程中,程序检测结点是否失衡,并根据失衡情况执行相应的平衡调整(LL、RR、LR、RL)。
删除结点:
用户可以输入要删除的结点值,程序通过 deleteNode 函数删除指定结点。
删除后,程序调用 balance_without_index 函数重新平衡二叉树。
输出显示:
程序通过输出语句展示插入和删除结点后的平衡二叉树,以及各个结点的平衡因子。
循环删除:
程序使用一个无限循环,允许用户输入要删除的结点值,直到通过Ctrl+Z退出。
总体而言,这个程序提供了一个基本的平衡二叉树的实现,并通过在插入和删除操作中自动调整树的结构,确保树的平衡性。
图像处理+基于opencv的HSV阈值和边缘检测的车牌定位裁剪
本研究采用一种基于HSV阈值和边缘检测的车牌识别方法,旨在提高车牌识别的准确性和鲁棒性。该方法主要包括以下步骤:
HSV阈值分割:首先,将彩色车牌图像转换为HSV颜色空间。通过分析HSV颜色分量,确定适当的阈值范围,以实现车牌区域的分割。将HSV图像与阈值进行比较操作,得到mask图像,再将mask与原图按位与,得到HSV处理后的图像。其中车牌区域为本色,背景区域为黑色。
边缘检测:在HSV阈值分割后,应用边缘检测算法对二值图像进行处理,以提取车牌区域的边缘信息。常用的边缘检测算法包括Canny算法、Sobel算法等。边缘检测可以帮助进一步定位车牌区域,并减少背景干扰。
边缘检测后返回对应定位车牌的外围矩形坐标,在原图上进行裁剪操作,将车牌区域裁剪出来。通过以上步骤的组合,基于HSV阈值和边缘检测的车牌识别方法可以实现对车牌区域的精确定位和分割。
基于STM32F103ZET6的CubeMX代码,包含多个例程
1.LED点亮实验
2.USART,PRINTF,串口输出上位机实验
3.EXIT外部中断实验,按键控制灯亮灭
4.IWDG,WWDG,独立看门狗与窗口看门狗实验
5.TIM6COUNT,定时器6的计时器模式实验
6.BREATHLED,呼吸灯实验
7.ICAPTURE,输入捕获实验,捕获高电平时间
8.ADC,模数转换实验
9.Encoder,霍尔编码器移植实验
10.DLBtemplete,旋转倒立摆综合设计
11.MPU6050,六轴传感器移植实验
12.FBcontrol,风板综合设计
13.OLED_0.96,0.96寸oled屏幕iic通信
14.DJ,标准舵机控制程序
15.K210与STM32进行串口通信
16.ball_control,板球控制系统
17.BlueTooth,蓝牙通信
18.超声波测距
19.串口屏
基于jetson nano的激光测距和色块识别
jetson nano下的python程序,基于多进程的激光测距和色块识别,同时将识别到的距离和色块中心和视野中心的偏差通过串口传到单片机。
STM32旋转倒立摆HAL库基于CubeMx实现.rar
旋转倒立摆的HAL库实现,用CubeMX实现,STM32F103ZET6
注释详细,同时攥写了代码经验,全手打,下载不吃亏,有问题可以联系我。