[BZOJ2154]Crash的数字表格(莫比乌斯反演)

题目:

我是超链接

题解:

这里写图片描述
这里写图片描述
这里写图片描述
柿子就画到这里,一层层往回代就好了,这里的sum可以O(1)求出,F
这里写图片描述
加上分块优化,这个复杂度基本是O(n)的

注意:最后的ans不要忘了+mod%)mod,sum的过程用一个语句很容易爆int

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long
using namespace std;
const int mod=20101009;
const int N=1e7;
int pri[N+5],num,n,m;LL mu[N+5];
bool ss[N+5];
void get_mu()
{
    mu[1]=1;
    for (LL i=2;i<=n;i++)
    {
        if (!ss[i])
        {
            pri[++num]=i;
            mu[i]=-1;
        }
        for (int j=1;j<=num && pri[j]*i<=n;j++)
        {
            ss[pri[j]*i]=1;
            if (i%pri[j]==0)
            {
                mu[pri[j]*i]=0;
                break;
            }
            mu[pri[j]*i]=-mu[i];
        }
    }
    for (int i=1;i<=n;i++) mu[i]=(mu[i-1]+(LL)i*i%mod*mu[i]%mod)%mod;
}
LL sum(LL x,LL y)
{
    LL w1=((x+1)*x/2)%mod;
    LL w2=((y+1)*y/2)%mod;
    return w1*w2%mod;
}
LL F(LL n,LL m)
{
    if (n>m) swap(n,m);
    LL t=0,j;
    for (int d=1;d<=n;d=j+1)
    {
        j=min(n/(n/d),m/(m/d));
        t=((LL)(mu[j]-mu[d-1])%mod*(LL)sum(n/d,m/d)%mod+t)%mod;
    }
    return t;
}
int main()
{
    scanf("%d%d",&n,&m);
    if (n>m) swap(n,m);
    get_mu();LL ans=0;int j;
    for (int d=1;d<=n;d=j+1)
    {
        j=min(n/(n/d),m/(m/d));
        ans=(ans+(LL)(d+j)*(LL)(j-d+1)/2%mod*(LL)F(n/d,m/d)%mod)%mod;
    } 
    printf("%lld",(ans+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值