题目:
题解:
先画个图
我们可以发现,答案必然是从AB上的某一个点出发,经过平面,到达CD上的另一点然后到达D。即答案可以表示为
|AF|/P+|FE|/R+|ED|/Q,其中F∈AB,E∈CD
|
A
F
|
/
P
+
|
F
E
|
/
R
+
|
E
D
|
/
Q
,
其
中
F
∈
A
B
,
E
∈
C
D
我们要找到最优解,其实就是在AB上确定一个点F,然后在CD上确定一个E
根据我的胡乱猜测,这个点的位置对于答案的大小是单峰的,单峰就用三分啊
那么我们三分F点,然后三分E点,也就是三分套三分,可以解决此题
题解部分引自这个up,侵删
代码:
#include <cstdio>
#include <cmath>
using namespace std;
const double eps=1e-4;
int ax,ay,bx,by,cx,cy,dx,dy,p,q,r;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double f(double x,double y)
{
double lx=cx,ly=cy,rx=dx,ry=dy,x1,y1,x2,y2;
while (fabs(rx-lx)>=eps || fabs(ry-ly)>=eps)
{
x1=lx+(rx-lx)/3; y1=ly+(ry-ly)/3;
x2=rx-(rx-lx)/3; y2=ry-(ry-ly)/3;
double f1=dis(x,y,x1,y1)/(r*1.0)+dis(x1,y1,dx,dy)/(q*1.0);
double f2=dis(x,y,x2,y2)/(r*1.0)+dis(x2,y2,dx,dy)/(q*1.0);
if (f1<f2) rx=x2,ry=y2;
else lx=x1,ly=y1;
}
return dis(x,y,lx,ly)/(r*1.0)+dis(lx,ly,dx,dy)/(q*1.0)+dis(x,y,ax,ay)/(p*1.0);
}
int main()
{
scanf("%d%d%d%d",&ax,&ay,&bx,&by);
scanf("%d%d%d%d",&cx,&cy,&dx,&dy);
scanf("%d%d%d",&p,&q,&r);
double lx=ax,ly=ay,rx=bx,ry=by,x1,y1,x2,y2;
while (fabs(rx-lx)>=eps || fabs(ry-ly)>=eps)
{
x1=lx+(rx-lx)/3; y1=ly+(ry-ly)/3;
x2=rx-(rx-lx)/3; y2=ry-(ry-ly)/3;
if (f(x1,y1)<f(x2,y2)) rx=x2,ry=y2;
else lx=x1,ly=y1;
}
printf("%.2lf",f(lx,ly));
}