[BZOJ1857][SCOI2010]传送带(三分套三分)

题目:

我是超链接

题解:

先画个图
这里写图片描述
我们可以发现,答案必然是从AB上的某一个点出发,经过平面,到达CD上的另一点然后到达D。即答案可以表示为
|AF|/P+|FE|/R+|ED|/Q,FABECD | A F | / P + | F E | / R + | E D | / Q , 其 中 F ∈ A B , E ∈ C D
我们要找到最优解,其实就是在AB上确定一个点F,然后在CD上确定一个E

根据我的胡乱猜测,这个点的位置对于答案的大小是单峰的,单峰就用三分啊
那么我们三分F点,然后三分E点,也就是三分套三分,可以解决此题

题解部分引自这个up,侵删

代码:

#include <cstdio>
#include <cmath>
using namespace std;
const double eps=1e-4;
int ax,ay,bx,by,cx,cy,dx,dy,p,q,r;
double dis(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double f(double x,double y)
{
    double lx=cx,ly=cy,rx=dx,ry=dy,x1,y1,x2,y2;
    while (fabs(rx-lx)>=eps || fabs(ry-ly)>=eps)
    {
        x1=lx+(rx-lx)/3; y1=ly+(ry-ly)/3;
        x2=rx-(rx-lx)/3; y2=ry-(ry-ly)/3;
        double f1=dis(x,y,x1,y1)/(r*1.0)+dis(x1,y1,dx,dy)/(q*1.0);
        double f2=dis(x,y,x2,y2)/(r*1.0)+dis(x2,y2,dx,dy)/(q*1.0);
        if (f1<f2) rx=x2,ry=y2;
        else lx=x1,ly=y1;
    }
    return dis(x,y,lx,ly)/(r*1.0)+dis(lx,ly,dx,dy)/(q*1.0)+dis(x,y,ax,ay)/(p*1.0);
}
int main()
{
    scanf("%d%d%d%d",&ax,&ay,&bx,&by);
    scanf("%d%d%d%d",&cx,&cy,&dx,&dy);
    scanf("%d%d%d",&p,&q,&r);
    double lx=ax,ly=ay,rx=bx,ry=by,x1,y1,x2,y2;
    while (fabs(rx-lx)>=eps || fabs(ry-ly)>=eps)
    {
        x1=lx+(rx-lx)/3; y1=ly+(ry-ly)/3;
        x2=rx-(rx-lx)/3; y2=ry-(ry-ly)/3;
        if (f(x1,y1)<f(x2,y2)) rx=x2,ry=y2;
        else lx=x1,ly=y1;
    }
    printf("%.2lf",f(lx,ly));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值