keras之分类问题和回归问题

keras之分类问题和回归问题

一、keras之分类问题

  • 分类问题预测的是类别,模型的输出是概率分布

  • 三分类问题输出例子:[0.2, 0.7, 0.1]

(假设数组中的3个索引位置表示不同类别的概率输出,0.2表示猫类,0.7表示狗类,0.1表示狼类,队伍分裂问题,概率最高的为模型预测的分类,结果可想而之,该模型预测狗类的概率最高,)

二、回归问题

回归问题预测的是值,模型的输出是一个实数值

三、目标函数

  • 参数是逐步调整得到的,机器学习不能直接计算得到最终正确的值,只能调参
  • 目标函数可以帮助衡量模型的好坏

3.1分类问题的目标函数

  • 需要衡量目标类别与当前预测的差距

    三分类问题输出例子:[0.2, 0.7, 0.1]

    三分类真实类别:2 >one_hot->[0.0.1]

四、one-hot编码,把正整数变为向量表达

  • 生成一个长度不小于正整数的向量,只有正整数的位置是1,其余位置都为0

五、分类问题目标函数的描述损失函数

  • 平方差损失
    1 n ∑ x , y 1 2 ( y − M o d e l ( x ) ) 2 \frac{1}{n}\sum_{x,y}\frac{1}{2}(y-Model(x))^2 n1x,y21(yModel(x))2

  • 交叉熵损失
    1 n ∑ x , y y ln ⁡ ( M o d e l ( x ) ) \frac{1}{n}\sum_{x,y}y\ln(Model(x)) n1x,yyln(Model(x))

实战之分类模型的数据读取与展示

一、在tensorflow2.0的版本下使用jupyter

1、导包
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
    print(module.__name__, module.__version__)
2、下载数据

Fashion-MNIST 是⼀个10 类服饰分类数据集。Fashion-MNIST 中⼀共包括了10 个类别,分别为:t-shirt(T 恤)、trouser(裤⼦)、pullover(套衫)、dress(连⾐裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)

fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
x_valid,x_train = x_train_all[:5000],x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

运行结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G75YSYQK-1575541836686)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191202181056249.png)]

3、展示数据
def show_single_image(img_arr):
    plt.imshow(img_arr, cmap="binary")
    plt.show()

show_single_image(x_train[0])

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E18CHr5I-1575541836687)()]

多个数据展示

def show_imgs(n_rows, n_cols, x_data, y_data, class_names):
    assert len(x_data) == len(y_data)
    assert n_rows *n_cols < len(x_data)
    plt.figure(figsize=(n_cols*1.4, n_rows *1.6))
    for row in range(n_rows):
        for col in range(n_cols):
            index = n_cols * row + col
            plt.subplot(n_rows, n_cols, index+1)
            plt.imshow(x_data[index], cmap="binary", interpolation= "nearest")
            plt.axis("off")
            plt.title(class_names[y_data[index]])
    plt.show()

class_names = ["T-shirt", "Trouser", 'Pillover', "Dress",
                "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
show_imgs(3, 5, x_train, y_train, class_names)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aDnOHgge-1575541836688)()]

二、模型构建

1、基于上面的数据进行模型Sequential序列

# tf.keras.models.sequential()
model = keras.models.Sequential()
model.add(keras.layers.Flatten(inpput_shape=[28, 28])) # 展开输入的28*28的二维矩阵为28*28的一维向量
# 添加全连接层(神经网路中上一层和下一层全部一一连接)
model.add(keras.layers.Dense(300, activation="relu")) # activation激活函数
model.add(keras.layers.Dense(100, activation="relu"))
# softmax :将向量变成概率分布 ,x=[x1,x2,x3]
#. y = [e^x1/sum, e^x2/sum, e^x3/sum],sum = e^x1+e^x2+e^x3
model.add(keras.layers.Dense(10, activation="softmax"))
# relu: y = max(0, x) 谁大输出谁

# 目标函数 y ->index, 如果y是输用sparse,向量的话不用,y数->one_hot->向量
model.compile(loss="sparse_categorical_crossentropy",optimizer = "sgd", # optimizer:模型的求解方法,也是目标函数的调整方法,就是选择优化算法,发展历程
#SGD -> SGDM -> NAG ->AdaGrad -> AdaDelta -> Adam -> Nadam 
metrics = ["accuracy"]) # accuracy 其他指标
# 调用model.compile的目的是将损失函数,优化方法和其他指标添加到图上,并固化下来

# 另一种写法
model = keras.models.Sequential([
 keras.layers.Flatten(inpput_shape=[28, 28]),
  keras.layers.Dense(300, activation="relu"),
  keras.layers.Dense(100, activation="relu"),
  model.add(keras.layers.Dense(10, activation="softmax")
])
  model.compile(loss="sparse_categorical_crossentropy",
              optimizer = "Nadam",
              metrics = ["accuracy"])

2、查看模型的层数

model.layers

3、model.summary

查看模型架构

4、训练模型

history = model.fit(x_train, y_train, epochs=10, validation_data=(x_valid, y_valid))

5、查看history的类型

type(history)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MwWQOtQb-1575541836689)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191203114646650.png)]

6、查看训练过程

history.history

7、画图

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8,5))# figsize 图的大小设置
    plt.grid(True) # 网格显示
    plt.gca().set_ylim(0, 1) # 坐标轴的范围
    plt.show()
plot_learning_curves(history)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W3px9IBp-1575541836690)(/Users/bobwang/Library/Application Support/typora-user-images/image-20191203114809481.png)]

8、使用测试集查看模型成功率

model.evaluate(x_test, y_test)

分类模型之数据归一化

一、数据归一化的目的

数据归一化就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用

二、数据归一化的方法

1、最值归一化
最值归一化的计算公式:

img

特点:

可以将所有数据都映射到0-1之间,适用于数据分布有明显边界的情况,容易受到异常值(outlier)的影响,异常值会造成数据的整体偏斜

2、均值方差归一化
计算公式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DPksExpG-1575541836692)(https://images2018.cnblogs.com/blog/1376938/201807/1376938-20180718211654909-1907604593.png)]

特点:

可以将数据归一化到均值为0方差为1的分布中,不容易受到异常值(outliter)影响

三、实例

代码:

1、导包
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
    print(module.__name__, module.__version__)
2、数据的获取
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
x_valid,x_train = x_train_all[:5000],x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
3、归一化
# x = (x - u) / std  (均值方差归一化)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
# x_train: [None, 28, 28] -> [None, 784], 
#1)归一化的时候,所有的均值方差都要使用训练集的均值方差,所有用fit_transform记录下来,以供测试集和验证集使用而达到一种理性的结果
#2)归一化需要做除法,所以要将int转为float32
#3)fit_transform要求是二维向量,而原来的x_train是三维向量,所以先转为二维,
x_train_scaled = scaler.fit_transform(
    x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_valid_scaled = scaler.transform(
    x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)
x_test_scaled = scaler.transform(
    x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28, 28)

4、构建模型
model = keras.models.Sequential([
 keras.layers.Flatten(inpput_shape=[28, 28]),
  keras.layers.Dense(300, activation="relu"),
  keras.layers.Dense(100, activation="relu"),
  model.add(keras.layers.Dense(10, activation="softmax")
])
  model.compile(loss="sparse_categorical_crossentropy",
              optimizer = "Nadam",
              metrics = ["accuracy"])
5、训练模型
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_valid, y_valid))

回调函数

一、Tensorboard, earlystopping, ModelCheckpoint

# 第4步构建模型后,训练模型前
logdir = './callbacks'
if not os.path.exists(logdir):
    os.mkdir(logdir)
output_model_file = os.path.join(logdir,
                                 "fashion_mnist_model.h5")

callbacks = [
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,
                                    save_best_only = True),
    keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3),
]# patience连续5次前后模型训练的差值小于设置的阈值min_delta,就关闭
history = model.fit(x_train_scaled, y_train, epochs=10,
                    validation_data=(x_valid_scaled, y_valid),
                    callbacks = callbacks)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Keras 是一个深度学习框架,可以用于解决分类回归问题。 在 Keras 中,可以同时输出分类回归问题。首先,我们需要定义一个多输出模型,它具有多个输出层。对于分类问题,可以使用 softmax 函数作为输出层,并使用交叉熵损失函数进行训练和优化。对于回归问题,可以使用线性激活函数作为输出层,并使用平方损失函数进行训练和优化。 以下是一个示例代码,展示了如何在 Keras 中同时输出分类回归问题: ```python from keras.models import Model from keras.layers import Dense, Input, Activation from keras.optimizers import SGD # 定义输入层 input_layer = Input(shape=(100,)) # 定义分类输出层 classification_output = Dense(10, activation='softmax')(input_layer) # 定义回归输出层 regression_output = Dense(1, activation='linear')(input_layer) # 定义多输出模型 model = Model(inputs=input_layer, outputs=[classification_output, regression_output]) # 编译模型 model.compile(optimizer=SGD(), loss=['categorical_crossentropy', 'mean_squared_error'], metrics=['accuracy']) # 训练模型 model.fit(x_train, [y_classification_train, y_regression_train], epochs=10, batch_size=32) # 测试模型 loss, classification_loss, regression_loss, classification_accuracy = model.evaluate(x_test, [y_classification_test, y_regression_test]) ``` 在上述代码中,定义了一个包含输入层、分类输出层和回归输出层的模型。同时,使用了交叉熵损失函数和平方损失函数对分类回归问题进行训练和优化。最后,使用 evaluate 方法测试模型性能时,可以得到总体损失以及分类回归问题的个别损失和准确率。 通过定义多输出模型,Keras 可以同时解决分类回归问题,使得模型训练和预测更加灵活多样。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值