python numpy中astype使用不当导致图像出现artifact

本文揭示了在网络训练中生成图像出现异常的原因:Python将负数的float类型变量直接转换为uint8时,负数值变为极大正数,导致图像出现白色杂点。文章通过示例代码展示了这一现象,并提出正确的转换方法,即将超出范围的值截断后再转换。
摘要由CSDN通过智能技术生成

在网络训练中,发现生成的图像不对劲,如下面左图所示,文字完全不对。后来发现,是因为在python中把float类型的变量直接转成uint8的时候,负数部分就变成了极大的整数,变成了图中的白点。应该是采用截断的方法,把小于0大于255的都截断,然后再转换成uint8。得到的结果如右图所示。

 一段验证性的代码,如果把a转成uint8,我们会发现-5就变成了(256-5)=251,而300就变成了(300-256)=44。所谓白色的地方出现了黑点,而黑字上也有了白点。

import numpy as np

a = [-5, -10, 240, 300]

a = np.reshape(a,[4,1])

b = a.astype(np.uint8)

  

print(a)
[[ -5]
 [-10]
 [240]
 [300]]

print(b)
[[251]
 [246]
 [240]
 [ 44]]

  

 

转载于:https://www.cnblogs.com/sunny-li/p/10265755.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值