非视距微波传输抗干扰特性

非视距微波点对点或者点多多点传输,采用卓越的抗干扰算法及接入时隙分配载波,即使在NLOS环境下,仍能保持通信,是林业、山区通信的不二之选。同时由于容量大,节点多,也是野外分布式传感器网络的理想选择,助理中国野外科考、研究。

机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。 机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+文档报告+数据集机器学习作业,机器学习和深度学习方法实现的入侵检测源代码+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值