计算机视觉算法

计算机视觉包括光度、语义和几何三个领域,涉及图像处理、立体视觉、物体检测等。未来将深入结合深度学习,与常识、领域知识、语言等领域融合发展。关键任务如图像去噪、语义分割、三维重建和视觉SLAM等展示了其广阔的应用前景。
摘要由CSDN通过智能技术生成

计算机视觉算法

计算机视觉分为光度视觉、语义视觉和几何视觉,分别从传统的图像处理、立体视觉和三维重建、物体检测和识别发展而来,将来的发展趋势是深度学习方向,如下图所示:

这三类计算机视觉任务定义如下:

光度视觉定义:采集图像,处理图像(图像降噪、增强、矫正、剪裁等)。

语义视觉定义:理解图像,表达图像(可以是自然语言,也可以是数学语言等)。

几何视觉定义:变换图像,重构图像(2D或3D的,现实、虚拟或者混合现实的)。

光度视觉分类:图像基本操作、图像去噪和图像增强、图像矫正和图像剪裁等。

语义视觉分类:图像检测和图像识别(传统算法),语义分割、实例分割和全景分割(AI算法),图像检索和图像标注。

几何视觉分类:图像拼接(静态2D现实的几何图像)、三维重建(静态3D现实的几何图像)、物体追踪(动态现实的几何图像)、地图构建(稀疏地图和稠密地图、局部地图和全局地图、高精地图)、XR(虚拟现实、增强现实、混合现实的几何图像)

将来计算机视觉将回归本质,跟常识、领域知识、语言、多模态和学习等各个领域融合发展。

视觉SLAM可以认为是计算机视觉在几何感知方面的重要应用!

实例分割、语义分割与全景分割的区别参考链接:

https://wap.sciencenet.cn/blog-3428464-1280762.html?mobile=1

https://zhuanlan.zhihu.com/p/303355997

腾讯 AI Lab & Robotics X 主任张正友博士:计算机视觉的三生三世 | CCF-GAIR 2019

https://www.leiphone.com/category/academic/qdRAXECDx3lcazlb.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值