泰伯效应.

泰伯效应是与光栅有关的最著名的衍射效应之一,最早于1836年由Henry Fox Talbot首次观察得到。 当周期性结构,如光栅被平面波照射,可以观察到光栅后面一定距离(或其倍数)处的光栅图像。该特定距离称之为泰伯长度。借助VirtualLab Fusion中的自动选择的自由空间传播技术,可以轻松、准确地再现和分析此效应。 我们以线性和交叉光栅为例进行演示。
 

泰伯效应的建模

我们演示了泰伯效应,这是一种周期性结构(例如光栅)众所周知的近场衍射效应。
 

傅立叶变换的自动选择
 

VirtualLab Fusion在k域中提供了统一的自由空间传播概念,并自动选择了适当的傅立叶变换技术。

### 泰伯效应简介 泰伯效应是指当单色平面波垂直照射一个周期性物体(如透射光栅)时,在物体后面周期性距离上会出现物体的像。这种自成像效应属于衍射成像而非透镜成像[^5]。 ### 使用Matlab实现泰伯效应仿真 为了在Matlab中实现泰伯效应的仿真,可以采用傅里叶变换方法来模拟光通过周期性结构后的传播情况。具体来说,`fft2` 函数用于二维快速傅立叶变换,能够有效表示空间频率分布;而 `ifft2` 则用来逆向转换回实际的空间域图像。 #### 主要步骤概述: - 创建代表光栅或其他周期性结构的初始阵列; - 应用二维傅里叶变换 (`fft2`) 来获取频谱信息; - 计算不同位置下的相位变化并调整相应参数; - 执行反向傅里叶变换 (`ifft2`) 得到最终的结果图像; - 绘制结果以展示泰伯效应对原始图案的影响。 以下是具体的代码示例: ```matlab % 参数设置 lambda = 632.8e-9; % 光波长 (m),这里取氦氖激光器常用的红光波长为例 d = 100e-6; % 周期长度 (m) z = d^2 / lambda; % Talbot distance, z=md²/λ where m is an integer N = 512; % 图像尺寸大小 N×N pixels dx = 1e-4/N; % pixel size in meters [x,y] = meshgrid(-N/2:N/2-1,-N/2:N/2-1)*dx; r = sqrt(x.^2+y.^2); % 定义输入场 E_in(r), 这里假设是一个简单的正弦光栅模式 E_in = cos(2*pi*x/d); % FFT to k-space and apply propagation phase factor exp(i*k*z) kx = fftshift(fftfreq(N,dx)); [kX,kY] = meshgrid(kx); K = sqrt((2*pi/lambda)^2-(kX.^2+kY.^2)); phase_factor = exp(1i*K*z); E_out_k_space = fftshift(fft2(E_in)).*phase_factor; % IFFT back to real space E_out = ifft2(ifftshift(E_out_k_space)); % 显示结果 figure; subplot(1,2,1); imagesc(abs(E_in)); title('Input Grating'); subplot(1,2,2); imagesc(abs(E_out)); title('Output Image at One Talbot Distance'); function f = fftfreq(n,delta_x) n = double(n); df = 1/(n*delta_x); f = (-n/2:n/2-1)' * df; end ``` 这段程序创建了一个理想化的正弦形光栅作为输入,并计算其在一个完整的泰伯距离之后形成的输出图像。这使得用户可以直接观察到由泰伯效应引起的自复制特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值