线段树(洛谷P3372)

这篇博客介绍了线段树的数据结构及其在区间修改和查询操作中的应用。线段树通过lz标志记录区间修改,使用push_down函数将修改下推到叶子节点,保持查询正确性,同时保持操作的时间复杂度为O(logn)。代码实现包括了线段树的初始化、区间修改(add)和区间查询(search)功能。
摘要由CSDN通过智能技术生成

线段树

P3372 【模板】线段树 1https://www.luogu.com.cn/problem/P3372

关于lz标记和push_down

线段树进行区间修改后会出现未被修改的叶子节点,再次进行查询或修改操作可能会出错,但如果每次修改都修改到叶子节点的话线段树会退化到O(n),所以我们对根节点加上lz标志,来记录左右儿子应该进行的修改操作。当再次进行修改或查询时,进行push_down,将左右儿子节点的数值更新,就可以避免出错,且复杂度仍为long(n)

#include<bits/stdc++.h>
using namespace std;
const int	N = 5e5 + 10;
#define TLE std::ios::sync_with_stdio(false)
#define ll long long 
int  n, m;
int a[N];
struct node
{
	int l, r;
	int lz;//lazy标志,所加数的大小被存入lz中;
	ll  sum;
}tr[4*N];//线段树一般开4倍的空间

void build(int i, int l, int r)
{
	tr[i].l = l; tr[i].r = r; tr[i].lz = 0;
	if (l == r)
	{
		tr[i].sum = a[l];
		return;
	}
	int mid = (r + l) / 2;
	build(i * 2, l, mid);
	build(i * 2 + 1, mid + 1, r);
	tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
}
void push_down(int i)
{
	if (tr[i].lz!=0)//此处不能写if(!tr[i].lz)修改值可能为负值
	{
		tr[i * 2].lz += tr[i].lz;
		tr[i * 2 + 1]. lz += tr[i].lz;
		int mid = (tr[i].l + tr[i].r) / 2;
		tr[i * 2].sum += tr[i].lz * (mid - tr[i*2].l+1);
		tr[i * 2 + 1].sum += tr[i].lz * (tr[i*2+1].r - mid);
		tr[i].lz = 0;
	}
	return;
}
void add(int i, int l, int r, int k)
{
	if (tr[i].l >= l && tr[i].r <= r)
	{
		tr[i].sum += k*(tr[i].r-tr[i].l+1);
		tr[i].lz += k;
		return;
	}
	push_down(i);
	if (tr[i * 2].r >= l)
		add(i * 2, l, r, k);
	if (tr[i * 2 + 1].l <= r)
		add(i * 2 + 1, l, r, k);
	tr[i].sum = tr[i * 2].sum + tr[i * 2 + 1].sum;
	return;
}
long long search(int i, int l, int r)
{
	if (tr[i].l >= l && tr[i].r <= r)
	return tr[i].sum;
	push_down(i);
	long long s = 0;
	if (tr[i * 2].r >= l)
		s += search(i * 2, l, r);
	if (tr[i * 2 + 1].l <= r)
		s += search(i * 2 + 1, l, r);
	return s;
}
int main()
{
	TLE;
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
	}
	build(1,1,n);
	int t;
	while(m--)
	{ 
		cin >>t ;
		if (t == 1)
		{
			int x, y, k;
			cin >> x >> y >> k;
			add(1, x, y, k);
		}
		else if (t == 2)
		{
			int x, y;
			cin >> x>>y;
			cout << search(1, x, y) <<endl;
		}
	}
	return 0;
}

洛谷P1168题目是关于中位数线段树解法的问题。中位数线段树解法可以通过维护两个堆来实现。一个是大根堆,一个是小根堆。每次插入元素时,根据一定的规则来维护这两个堆,使得大根堆的个数在一定情况下比小根堆多1或者相等。大根堆的最后一个元素即为中位数。具体的规则如下: 1. 如果大根堆和小根堆的个数相等,下一次插入的元素一定插入到大根堆。此时判断小根堆的堆顶是否大于当前元素x,如果是,则将小根堆的堆顶元素插入到大根堆,然后将x压入小根堆;否则直接将x压入大根堆。 2. 如果大根堆和小根堆的个数不相等,按照类似的规则进行操作。 通过以上规则,可以实现在每次插入元素时,维护两个堆的平衡,并且保证大根堆的最后一个元素即为中位数。 这种解法的时间复杂度为O(logN),其中N为序列的长度。 #### 引用[.reference_title] - *1* *2* [中位数(洛谷p1168)(堆/树状数组+二分/线段树+二分)](https://blog.csdn.net/qq_45604735/article/details/114382762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [洛谷 P1168 中位数(权值线段树,离散化)](https://blog.csdn.net/qq_38232157/article/details/127594230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值