1.Spark的概述及特点
执行速度快、易用、通用
2.Spark的产生背景
(1)MapReduce的局限性:代码繁琐、只能支持map和reduce方法、执行效率低下、不适合迭代多次、交互式、流式的处理
(2)框架多样化:1)批处理:MapReduce、Hive、Pig;2)流式处理:Storm、Jstorm;3)交互式计算:Impala
这些需求都可以用Spark解决
3.Spark对比Hadoop
(1)Spark生态系统
本文介绍了Spark的特点,包括执行速度快、易用和通用性,并探讨了Spark产生的背景,主要是为了解决MapReduce的局限性。文章还对比了Spark和Hadoop的生态系统,以及它们各自的优缺点,并讨论了Spark如何与Hadoop协作,以实现更高效的处理需求。
1.Spark的概述及特点
执行速度快、易用、通用
2.Spark的产生背景
(1)MapReduce的局限性:代码繁琐、只能支持map和reduce方法、执行效率低下、不适合迭代多次、交互式、流式的处理
(2)框架多样化:1)批处理:MapReduce、Hive、Pig;2)流式处理:Storm、Jstorm;3)交互式计算:Impala
这些需求都可以用Spark解决
3.Spark对比Hadoop
(1)Spark生态系统

被折叠的 条评论
为什么被折叠?