算法与数据结构——Morris遍历(java)(b站左程云课程总结)

Morris遍历是一种在不使用额外空间的情况下,以O(N)时间复杂度遍历二叉树的方法。该算法通过利用空闲指针,避免了递归带来的空间开销。文章详细介绍了如何实现Morris前序、中序和后序遍历,并给出了相应的Java代码实现。这种遍历方式对于理解节点的访问次数和顺序特别有用。
摘要由CSDN通过智能技术生成

Morris遍历

  • 一种遍历二叉树的方式,并且时间复杂度O(N),额外空间复杂度O(1)(递归函数是系统压栈,代价:二叉树的高度)
  • 通过利用原树中大量空闲指针的方式,达到节省空间的目的

image-20220625151851643

image-20220625152424527

上图Morris序:1,2,4,2,5,1,3,6,3,7

没有左树的节点只能到一次,有左树的节点能到两次,Morris遍历可以知道是第几次到达的当前节点(通过左树的最右节点的指针)

public void morris(Node head){
    if(head==null){
        return;
    }
    Node cur=head;
    Node mostRight=null;
    while(cur!=null){//情况三作为退出循环的条件
        mostRight=cur.left;
        if(mostRight!=null){//cur有左孩子
            while(mostRight.right!=null&&mostRight.right!=cur){//别忘了后面这个判断条件
                mostRight=mostRight.right;
            }
            //此时mostRight是cur左子树上的最右节点
            if(mostRight.right==null){
                mostRight.right=cur;
                cur=cur.left;
                continue;
            }else{//mostRight.right=cur
                mostRight.right=null;
            }
        }
        cur=cur.right;
    }
}

额外空间复杂度显然是O(1)

时间复杂度:
keypoint:所有节点遍历左子树右边界的总代价,所有节点遍历左子树的右边界不会重复,代价O(N)

image-20220625155253437

如何将Morris序改成先序?

如果一个节点只能到达一次,就直接打印(没有左子树)

如果一个节点能到达两次,第一次打印(有左子树)

public void morrisPre(Node head){
    if(head==null){
        return;
    }
    Node cur=head;
    Node mostRight=null;
    while(cur!=null){
        mostRight=cur.left;
        if(mostRight!=null){
            while(mostRight.right!=null&&mostRight.right!=cur){
                mostRight=mostRight.right;
            }
            if(mostRight.right==null){//第一次来到cur
                System.out.println(cur.value);
                mostRight.right=cur;
                cur=cur.left;
                continue;
            }else{
                mostRight.right=null;
            }
        }else{//没有左子树的情况
            System.out.println(cur.value);
        }
        cur=cur.right;
    }
}

中序遍历:
如果一个节点只能到达一次,直接打印(没有左树)

如果一个节点能到达两次,第二次来到的时候打印(有左树)

public void morrisIn(Node head){
    if(head==null){
        return;
    }
    Node cur=head;
    Node mostRight=null;
    while(cur!=null){
        mostRight=cur.left;
        if(mostRight!=null){
            while(mostRight.right!=null&&mostRight.right!=cur){
                mostRight=mostRight.right;
            }
            if(mostRight.right==null){
                mostRight.right=cur;
                cur=cur.left;
                continue;
            }else{
                mostRight.right==null;
            }
        }
        System.out.println(cur.value);//优化过
        cur=cur.right;
    }
}

后序遍历

当一个节点来到第二次的时候,逆序打印当前节点左树右边界

整个过程都进行完之后:单独逆序打印整棵树的右边界

image-20220625163131658

如何做到逆序打印左树右边界,并且时间复杂度为O(N),空间复杂度为O(1)

单链表的逆序操作+复原

image-20220625163325063

public void morrisPos(Node head){
    if(head==null){
        return;
    }
    Node cur=head;
    Node mostRight=null;
    while(cur!=null){
        mostRight=cur.left;
        if(mostRight!=null){
            while(mostRight.right!=null&&mostRight.right!=cur){
                mostRight=mostRight.right;
            }
            if(mostRight.right==null){
                mostRight.right=cur;
                cur=cur.left;
                continue;
            }else{
                mostRight.right=null;
                printEdge(cur.left);
            }
        }
        cur=cur.right;
    }
    //最后打印整颗d
    printEdge(head);
}


public void printEdge(Node x){
    Node tail=reverseEdge(x);
    Node cur=tail;
    while(cur!=null){
        System.out.print(cur.value+" ");
        cur=cur.right;
    }
    reverseEdge(tail);
}

public Node reverseEdge(Node from){
    Node pre=null;
    Node next=null;
    while(from!=null){
        next=from.right;
        from.right=pre;
        pre=from;
        from=next;
    }
    return pre;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值