设dp[x][y]表示[x, y]这个区间可以折叠的最小长度。
那么dp[x][y] = dp[x][i] + dp[i + 1][y]。
对于可以折叠的一部分,有
dp[x][y] = dp[x][i] + 2 + calc((y - x + 1) / (i - x + 1))。
calc()是算十进制数字的长度的。
/* Footprints In The Blood Soaked Snow */
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 105, inf = 0x3f3f3f3f;
int n, dp[maxn][maxn];
char str[maxn];
inline bool check(int x, int k, int y) {
int len = k - x + 1;
if((y - x + 1) % len) return 0;
for(int i = x; i <= k; i++) for(int j = i + len; j <= y; j += len)
if(str[j] != str[i]) return 0;
return 1;
}
inline int calc(int x) {
int res = 0;
for(; x; x /= 10) res++;
return res;
}
inline int dfs(int x, int y) {
if(x == y) return dp[x][y] = 1;
if(dp[x][y] != inf) return dp[x][y];
dp[x][y] = y - x + 1;
for(int i = x; i < y; i++) {
dp[x][y] = min(dp[x][y], dfs(x, i) + dfs(i + 1, y));
if(check(x, i, y))
dp[x][y] = min(dp[x][y], dp[x][i] + 2 + calc((y - x + 1) / (i - x + 1)));
}
return dp[x][y];
}
int main() {
scanf("%s", str); n = strlen(str);
for(int i = 0; i < n; i++) for(int j = i; j < n; j++) dp[i][j] = inf;
printf("%d\n", dfs(0, n - 1));
return 0;
}