【BZOJ1112】[POI2008]砖块Klo【Splay】

【题目链接】

最终高度一定是中位数,然后Splay维护一下就可以了。


答案会炸int。一开始只给加法加了LL,最后意识到先算的是乘法,所以给乘法加了LL就AC了。

/* Pigonometry */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int maxn = 100005;
const LL linf = 1LL << 60;

int n, m, h[maxn];

int pre[maxn], son[maxn][2], val[maxn], size[maxn];
LL sum[maxn], ans;
int root, tot1, tot2, sta[maxn];

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

inline void pushup(int x) {
	int l = son[x][0], r = son[x][1];
	sum[x] = sum[l] + val[x] + sum[r];
	size[x] = size[l] + 1 + size[r];
}

inline void newnode(int &x, int f, int c) {
	x = tot2 ? sta[tot2--] : ++tot1;
	son[x][0] = son[x][1] = 0;
	pre[x] = f;
	val[x] = sum[x] = c;
	size[x] = 1;
}

inline void init() {
	root = tot1 = tot2 = 0;
	son[0][0] = son[0][1] = val[0] = sum[0] = pre[0] = size[0] = 0;
}

inline void rotate(int x) {
	int y = pre[x], z = pre[y], type = son[y][1] == x;
	pre[son[y][type] = son[x][!type]] = y;
	pre[x] = z;
	if(z) son[z][son[z][1] == y] = x;
	pre[son[x][!type] = y] = x;
	pushup(y); pushup(x);
}

inline void splay(int x, int goal) {
	while(pre[x] != goal) {
		int y = pre[x], z = pre[y];
		if(z == goal) rotate(x);
		else if(son[z][1] == y ^ son[y][1] == x) rotate(x), rotate(x);
		else rotate(y), rotate(x);
	}
	if(!goal) root = x;
}

inline int find(int k) {
	int x = root;
	while(k != size[son[x][0]] + 1)
		if(k <= size[son[x][0]]) x = son[x][0];
		else k -= size[son[x][0]] + 1, x = son[x][1];
	return x;
}

inline int getmin(int x) {
	for(; son[x][0]; x = son[x][0]);
	return x;
}

inline int getmax(int x) {
	for(; son[x][1]; x = son[x][1]);
	return x;
}

inline void insert(int c) {
	if(root == 0) {
		newnode(root, 0, c);
		pushup(root);
		return;
	}
	int x = root;
	for(; son[x][c > val[x]]; x = son[x][c > val[x]]);
	newnode(son[x][c > val[x]], x, c);
	splay(son[x][c > val[x]], 0);
}

inline void del(int c) {
	int x = root;
	for(; val[x] != c; x = son[x][c > val[x]]);
	splay(x, 0);
	int l = getmax(son[x][0]), r = getmin(son[x][1]);
	if(l == 0) {
		root = son[x][1];
		pre[son[x][1]] = 0;
	}
	else if(r == 0) {
		root = son[x][0];
		pre[son[x][0]] = 0;
	}
	else {
		splay(l, 0); splay(r, l);
		son[r][0] = 0;
	}
	pre[x] = son[x][0] = son[x][1] = val[x] = sum[x] = size[x] = 0;
	sta[++tot2] = x;
	if(r) pushup(r);
	if(l) pushup(l);
}

inline void update() {
	int x = find(m);
	splay(x, 0);
	ans = min(ans, (LL)val[x] * size[son[x][0]] - sum[son[x][0]] + sum[son[x][1]] - (LL)val[x] * size[son[x][1]]);
}

int main() {
	n = iread(); int k = iread(); m = (k + 1) >> 1;
	for(int i = 1; i <= n; i++) h[i] = iread();

	init();
	ans = linf;
	for(int i = 1; i <= k; i++) insert(h[i]);
	for(int i = k + 1; i <= n; i++) {
		update();
		del(h[i - k]);
		insert(h[i]);
	}
	update();

	printf("%lld\n", ans);
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值