高中数学:零点综合题型(拔高)

本文详细探讨了数形结合和方程思想在解决零点问题中的应用,涉及分段函数、复合函数的零点转化技巧,通过例题展示如何将零点问题转化为交点问题,以及复合函数的换元方法和内、外函数图像分析。总结了零点转化成交点的几种常见类型和解题步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、零点与交点

关键原则
1、数形结合
2、方程思想

例题1
在这里插入图片描述
解题思路
1、函数转化成方程
2、零点问题转化成交点问题
3、数形结合
4、对数运算法则(函数值的和 转化成 x的积
在这里插入图片描述

二、分段函数零点

关键原则
1、分段函数分段看
2、数形结合
3、零点转交点,交点转零点

例题1
在这里插入图片描述
解题思路
1、画分段函数图像
2、零点转交点
在这里插入图片描述

三、复合函数零点(重难点)

关键原则
1、复合函数,通过换元,转化成方程组问题,然后,分内函数解与外函数解。
2、分别画内函数与外函数的图像
3、零点问题转化成交点问题
4、根据题设,观察函数图像,先内后外

例题1
在这里插入图片描述
解题步骤:
1、换元,将复合函数转化成方程组
在这里插入图片描述

2、画图
内函数图像是左侧图像,外函数图像是右侧图像
我们可以发现,若想有6个交点,则t1和t2必须在1到2之间
然后,将问题转化成二次函数根的范围问题
在这里插入图片描述
3、求二次函数根的范围
这里采用分离参数法
同时,将零点问题,转化成交点问题
来找出a的范围
在这里插入图片描述

四、总结

零点转化成交点的题目,有以下几类
1、加减形式构建的组合函数
在这里插入图片描述
2、乘除形式构建的复合函数
在这里插入图片描述
组合函数,直接画图找焦点
复合函数,换元转化成内函数与外函数的方程组
外函数的解,作为水平直线与内函数找交点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值