高中数学:函数零点存在定理

本文探讨了函数零点的概念,包括零点存在定理的实际应用、函数图像与零点的关系,以及如何通过分段函数和偶函数性质解决例题。例题展示了如何通过分析函数结构找到零点的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、函数零点

注意:函数零点是一个实数。不能写成坐标。
在这里插入图片描述

二、零点存在定理

注意:f(x)有零点 推不出 f(a)*f(b)<0
在这里插入图片描述在这里插入图片描述

三、函数零点与图像交点的转化

在这里插入图片描述
这个函数的函数图像的两种表示方法:
第一种:整体对待,看函数图像与x轴的交点
在这里插入图片描述
在这里插入图片描述
第二种:分成2个函数,观察这两个函数的交点。
在这里插入图片描述在这里插入图片描述

四、例题

例题1

可以发现,下面三个函数都包含+x,于是,把三个函数分成两部分,用第二种画法找出零点即可。
在这里插入图片描述

例题2

如果偶函数只有一个零点,那么,这个零点必是:0,且 f(0)=0
在这里插入图片描述

例题3

解题关键:
1、画分段函数图像
2、f(f(x))-3=0 => f(m)=3,找出所有的m,再考虑 f(x)=m1、 f(x)=m2、 f(x)=m3...
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值