高中数学:解三角形-大题练习(第二问解题方法整理)

一、题型归纳

1、最值问题

例题1、例题2

2、恒等变换

例题3、例题4、例题5、例题6

3、图形问题

例题7、例题8

例题1

在这里插入图片描述
解析
第二小问
首先,正弦定理和余弦定理都可以解决这一题。下面我给出两种解法
1、余弦定理+基本不等式
在这里插入图片描述
2、正弦定理+辅助角公式
在这里插入图片描述


例题2

在这里插入图片描述
解析
第二小问
这里求三角形面积,高中的面积公式是:
S=½*ab*sinC
S=½*ac*sinB
S=½*bc*sinA
这一题给出了∠A,所以,我们选择第三个
于是S=½*bc*sinA=½*2c*sin60=(√3/2)*c
问题转化成了求c的范围
这里给出两种解法
1、根据正弦定理,将边的范围转化成角的范围求解
2、对于定角定边的问题,画图确定c的范围(推荐
解法1
在这里插入图片描述
解法2
因为∠A是定值边b是定值,所以,能变化的就是c的变成
又由于是锐角三角形,
所以,两个极限情况就是,∠B=90、∠C=90。求出这两个极限角度时c对应的长度即可。

在这里插入图片描述

例题3

在这里插入图片描述


解析
第二小问
首先展开待求式,在结合二倍角公式展开,即可得解

例题4

在这里插入图片描述
解析
第二小问
根据三角恒等变换展开,即可求出sinA和cosA的值。
从而利用正弦定理,得解


例题5

在这里插入图片描述
解析
第二小问
由于,第一小问,已经求出∠A=60,且没有给出边a的值,所以,这一题选用正弦定理求解
将待求式中的边化为角,然后,进行三角函数的恒等变化,从而得解。
在这里插入图片描述


例题6

在这里插入图片描述
解析
第二小问
这里求的是a+c,我可以想到平方后的展开式中含有a^2+b^2
所以,联想到cosB的余弦定理。
在这里插入图片描述


例题7

在这里插入图片描述
解析
第一小问
给出了ac边和B的角度,所以,可以用∠B的余弦定理求出边b的长度
再用正弦定理,求出sinC的值
在这里插入图片描述
第二小问
在这里插入图片描述
在这里插入图片描述


例题8

在这里插入图片描述
解析
第一小问
条件给出了两边及其夹角,直接考虑用余弦定理,求出第三边长度
在根据正弦定理求出外接圆半径r即可。

如果给出两边及邻角,则考虑用正弦定理求出另外一角,在结合三角恒定变换,求出第三边。
在这里插入图片描述
第二小问
首先根据条件,找出AD与BD之间的数量关系,在根据余弦定理,求出各边长。
在根据正弦定理,求出sinα,得解。
在这里插入图片描述

### 使用 Python 实现三角形 #### 决方案概述 为了使用 Python 编写程序来三角形,需要考虑多个方面。这不仅涉及计算三角形的面积和周长,还需要确保输入数据的有效性和合法性。 #### 数据有效性检查 编写此程序时应考虑到三角形的构成条件:任何一边均需大于零,并且任意两边之和要大于第三边[^3]。因此,在接收用户输入之前,应该先定义一个函数用于验证这些条件: ```python def is_valid_triangle(a, b, c): if a + b > c and a + c > b and b + c > a: return True else: return False ``` #### 计算周长 一旦确认了给定长度能够组成有效三角形,则可继续处理后续逻辑。对于周长而言,只需简单相加三个边长即可得到结果[^2]: ```python def calculate_perimeter(a, b, c): perimeter = a + b + c return perimeter ``` #### 海伦公式求面积 海伦公式的应用是决此类题的关键所在。设 p 表示半周长 (perimeter / 2),则面积 S 可表示为 \(S=\sqrt{p(p-a)(p-b)(p-c)}\) ,其中a,b,c分别为三条边长[^1] : ```python import math def heron_formula_area(a, b, c): s = (a+b+c)/2 area = math.sqrt(s*(s-a)*(s-b)*(s-c)) return area ``` #### 完整代码实例 下面是一个完整的Python脚本例子,它实现了上述功能并允许用户交互式地提供三角形边长作为输入参数: ```python if __name__ == "__main__": try: side_a = float(input("请输入第一条边长: ")) side_b = float(input("请输入第二条边长: ")) side_c = float(input("请输入第三条边长: ")) if not is_valid_triangle(side_a, side_b, side_c): print("这不是一个有效的三角形!") else: perimter_result = calculate_perimeter(side_a, side_b, side_c) area_result = heron_formula_area(side_a, side_b, side_c) print(f"所构建的是一个有效的三角形。\n其周长为 {perimter_result} 单位,\n面积约为 {area_result:.2f} 平方单位.") except ValueError as e: print("输入错误,请确保您仅输入数值类型的边长.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值