高中数学:解三角形-大题练习(第二问解题方法整理)

一、题型归纳

1、最值问题

例题1、例题2

2、恒等变换

例题3、例题4、例题5、例题6

3、图形问题

例题7、例题8

例题1

在这里插入图片描述
解析
第二小问
首先,正弦定理和余弦定理都可以解决这一题。下面我给出两种解法
1、余弦定理+基本不等式
在这里插入图片描述
2、正弦定理+辅助角公式
在这里插入图片描述


例题2

在这里插入图片描述
解析
第二小问
这里求三角形面积,高中的面积公式是:
S=½*ab*sinC
S=½*ac*sinB
S=½*bc*sinA
这一题给出了∠A,所以,我们选择第三个
于是S=½*bc*sinA=½*2c*sin60=(√3/2)*c
问题转化成了求c的范围
这里给出两种解法
1、根据正弦定理,将边的范围转化成角的范围求解
2、对于定角定边的问题,画图确定c的范围(推荐
解法1
在这里插入图片描述
解法2
因为∠A是定值边b是定值,所以,能变化的就是c的变成
又由于是锐角三角形,
所以,两个极限情况就是,∠B=90、∠C=90。求出这两个极限角度时c对应的长度即可。

在这里插入图片描述

例题3

在这里插入图片描述


解析
第二小问
首先展开待求式,在结合二倍角公式展开,即可得解

例题4

在这里插入图片描述
解析
第二小问
根据三角恒等变换展开,即可求出sinA和cosA的值。
从而利用正弦定理,得解


例题5

在这里插入图片描述
解析
第二小问
由于,第一小问,已经求出∠A=60,且没有给出边a的值,所以,这一题选用正弦定理求解
将待求式中的边化为角,然后,进行三角函数的恒等变化,从而得解。
在这里插入图片描述


例题6

在这里插入图片描述
解析
第二小问
这里求的是a+c,我可以想到平方后的展开式中含有a^2+b^2
所以,联想到cosB的余弦定理。
在这里插入图片描述


例题7

在这里插入图片描述
解析
第一小问
给出了ac边和B的角度,所以,可以用∠B的余弦定理求出边b的长度
再用正弦定理,求出sinC的值
在这里插入图片描述
第二小问
在这里插入图片描述
在这里插入图片描述


例题8

在这里插入图片描述
解析
第一小问
条件给出了两边及其夹角,直接考虑用余弦定理,求出第三边长度
在根据正弦定理求出外接圆半径r即可。

如果给出两边及邻角,则考虑用正弦定理求出另外一角,在结合三角恒定变换,求出第三边。
在这里插入图片描述
第二小问
首先根据条件,找出AD与BD之间的数量关系,在根据余弦定理,求出各边长。
在根据正弦定理,求出sinα,得解。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值