高中数学:不等式-常见题型解题技巧

一、“1”的代换

在这里插入图片描述

练习

例题1
在这里插入图片描述在这里插入图片描述


例题2
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

二、基本不等式中的“变形”

就是,一般情况下,我们在题目中,是不能够直接使用基本不等式进行求解的。
而是要对条件等式进行变形,满足基本不等式的使用条件

练习

例题1
在这里插入图片描述
解析
两边同时乘以 1 x y \frac{1}{xy} xy1,这样,题目就转化成了:“1”的代换。


例题2
在这里插入图片描述
解析
因为
x > 1 , 所以, x − 1 > 0 x>1,所以,x-1>0 x>1,所以,x1>0
y = 2 x + 2 x − 1 ⇒ y = 2 ( x − 1 ) + 2 ( x − 1 ) + 2 y=2x+\frac{2}{x-1} \Rightarrow y=2(x-1)+\frac{2}{(x-1)} + 2 y=2x+x12y=2(x1)+(x1)2+2
最后,记得求出取等条件时,x的值。


例题3
在这里插入图片描述
解:
第一问(较难)
在这里插入图片描述
第二问
在这里插入图片描述

三、线性规划

解题步骤
1、画出可行域
2、将目标函数的斜率与条件函数的斜率比较
3、在可行域内移动目标函数,得出最优解
在这里插入图片描述

练习

例题1
在这里插入图片描述

在这里插入图片描述


例题2
在这里插入图片描述

在这里插入图片描述


例题3
在这里插入图片描述

在这里插入图片描述
我们可以看出,根据目标函数的不同,最值的几何特点也不同。
1,2两题就是找y轴的截距最值
第3题,转化成了点到直线距离的最值问题。

四、总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值