4378: [POI2015]Logistyka
Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 557 Solved: 277
[ Submit][ Status][ Discuss]
Description
维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。
Input
第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。
Output
包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。
Sample Input
3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
Sample Output
NIE
TAK
NIE
TAK
TAK
NIE
TAK
HINT
鸣谢Claris
Source
这题感觉有点骚
模型转化不是难点吧
模型抽象出来就是要维护>=一个值的个数
和小于一个值的所有值sum
先把值域离散化一下
然后开两个值域上的树状数组(分别维护个数和sum)
每次插入时在离散化后的值上+1,同时如果该位置已经修改过了,要把上次操作的值的位置-1
然后在另一个树状数组上加上原来的值,同时减去上次操作的值(如果有的话)
#include<cstdio>
#include<algorithm>
#include<cstring>
inline int lowbit(int x)
{
return x&(-x);
}
inline int read()
{
int ans=0,f=1;char t=getchar();
while(t<'0'||t>'9') f=(t=='-'?-1:1),t=getchar();
while(t>='0'&&t<='9') ans=ans*10+t-'0',t=getchar();
return ans*f;
}
int cnt;
const int N=1e6+7;
struct bit_node
{
long long c[N];
inline void modify(int x,int num)
{
for(int i=x;i<=cnt;i+=lowbit(i)) c[i]+=num;
}
inline long long query(int x)
{
long long ans=0;
for(int i=x;i;i-=lowbit(i)) ans+=c[i];
return ans;
}
}bit1,bit2;
inline char readchar()
{
char t=getchar();
while(t<'A'||t>'Z') t=getchar();
return t;
}
char au[N];
int bi[N],aa[N];
struct node
{
int v,order;
}e[N];
inline bool cmp(node a,node b)
{
return a.v<b.v;
}
inline bool cmp2(node a,node b)
{
return a.order<b.order;
}
int bo[N];
int main()
{
// freopen("in.txt","r",stdin);
int n=read(),m=read();
for(int i=1;i<=m;i++)
{
au[i]=readchar();
bi[i]=read();e[i].v=read(),e[i].order=i;
}
std::sort(e+1,e+1+m,cmp);
cnt=0;aa[e[1].order]=++cnt;
for(int i=2;i<=m;i++)
if(e[i].v==e[i-1].v) aa[e[i].order]=cnt;
else aa[e[i].order]=++cnt;
std::sort(e+1,e+1+m,cmp2);
int ans=0;
for(int i=1;i<=m;i++)
if(au[i]=='U')
{
if(!bo[bi[i]])
{
bo[bi[i]]=i,bit1.modify(aa[i],1);
bit2.modify(aa[i],e[i].v);
}
else
{
int j=bo[bi[i]];
bit1.modify(aa[j],-1);bit1.modify(aa[i],1);
bit2.modify(aa[j],-e[j].v);bit2.modify(aa[i],e[i].v);
bo[bi[i]]=i;
}
}
else
{
long long sum=bit1.query(cnt);
sum-=bit1.query(aa[i]-1);
bool flag=0;
if(bi[i]<=sum) flag=1;
else
{
sum=bi[i]-sum;
if(bit2.query(aa[i]-1)>=(long long)sum*e[i].v) flag=1;
}
if(flag==1) printf("TAK\n");
else printf("NIE\n");
}
return 0;
}