51nod 1013 3的幂的和(矩阵乘法版)

基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题
 收藏
 关注
求:3^0 + 3^1 +...+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Input示例
3
Output示例
40
李陶冶  (题目提供者)
C++的运行时限为:1000 ms ,空间限制为:131072 KB  示例及语言说明请按这里

网上一直查不到如何构造矩阵

问了@onion_cyc才弄明白

首先得到递推式f[i]=f[i-1]+3^i

那么我们先构造出一个(因为我们的递推式右边是这个)


那么我们就得到了i+1之后的矩阵

然后就根据矩阵乘法的原理得到式子了


#include<cstdio>
#include<cstring>
const int N=3;
typedef int matrix[N][N]; 
const int mod=1e9+7;
inline void calc(matrix a,matrix b)
{
	matrix c;
	for(int i=1;i<=2;i++)
	for(int j=1;j<=2;j++)
	{
		c[i][j]=0;
		for(int k=1;k<=2;k++)
		c[i][j]=(c[i][j]+(long long)a[i][k]*b[k][j]%mod)%mod;
	}
	for(int i=1;i<=2;i++)
	for(int j=1;j<=2;j++)
	a[i][j]=c[i][j];
}
int fast(int n)
{
	matrix ans;
	memset(ans,0,sizeof(ans));
	for(int i=1;i<=2;i++)	ans[i][i]=1;
	matrix a;
	a[1][1]=1;a[1][2]=1;
	a[2][1]=0;a[2][2]=3;
	while(n)
	{
		if(n&1)	calc(ans,a);
		n=n>>1;
		calc(a,a);
	}
	return (ans[1][1]+(long long)ans[1][2]*3%mod)%mod;
}
int main()
{
	int n;
	scanf("%d",&n);
	printf("%d\n",fast(n));
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值