PyTorch - LeNet以及ResNet实现

本文详细介绍了如何使用PyTorch实现经典的LeNet和ResNet卷积神经网络。针对LeNet,文章阐述了其基本结构,包括C1、S2、C3、S4和全连接层的设置,并提供了代码实现。而对于ResNet,文章讨论了ResNet的基本结构和在CIFAR10数据集上的调整,以及ResBlock的构建和自适应平均池化的应用。
摘要由CSDN通过智能技术生成

LeNet

基本结构

在这里插入图片描述
输入图片大小为[3, 32, 32]
C1: (kernel_size=5, stride=1, padding=0) => [6, 28, 28]
S2: (kernel_size=2, stride=2, padding=0) => [6, 14, 14]
C3: (kernel_size=5, stride=1, padding=0) => [16, 10, 10]
S4: (kernel_size=2, stride=2, padding=0) => [16, 5, 5]

FC1: (num_channel) 打平后总的数据量16×5×5 => 120
FC1: (num_channel)120 => 84
FC1: (num_channel)84 => 10

代码部分

导入包

nn包定义了很多模块,可以把它们当作一个个的神经网络层。
每个模块都有输入输出,并可能有一些可训练权重。

import torch
from torch import nn

构建不同的层

  • 构建的层都放在构造函数
  • 可以把几个连续的层作为一个序列,这样在后面调用时直接调用这一序列即可
nn.Sequential()

用到的函数:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值