题目描述:
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
示例 1:
输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
示例 3:
输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
提示:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums 中的所有整数 互不相同
nums 原来是一个升序排序的数组,并进行了 1 至 n 次旋转
作者:LeetCode
链接:https://leetcode.cn/leetbook/read/array-and-string/c3ki5/
来源:力扣(LeetCode)
看了一圈评论好像没有特别好的解法,一些算法的复杂度远远达不到logn,关键还有一些人装逼,说这道题有手就行,无语.....
个人的一个解法,算法复杂度为O(log n)
class Solution {
public:
int findMin(vector<int>& nums) {
int length =nums.size();
int right =length -1;
int left = 0; //得到左右指针
//nums的转动次数为1到n之间,也就是2到n-1
//以 n/2为界限,转动的情况不同
//对特殊情况进行讨论
if(length == 1)
return nums[0];
if(length ==2)
{
if(nums[0]>nums[1])
return nums[1];
else
return nums[0];
}
//如果小于(left+right)/2次,中间的数,应该是比两端的数小,而且最小值应该在中间到两端中较大的一端之间(左边),更新right
//如果大于(left+right)/2次,中间的数,应该是比两端的数大,而且最小值应该就在中间到两端中较小的一端之间(右边),更新left
//left或者right更新完成之后,从left到right 依然是一个有序但发生了选择的排列,所以可以循环上面的步骤
//当right大于left的时候,left就是我们要找的那个最小值
while(right>left)
{
if(nums[(right+left+1)/2]>nums[left]&&nums[(right+left+1)/2]<nums[right])
return nums[left]; //中间的数大于左边且小于右边,说明没有发生旋转,直接返回左端的数
if(nums[(left+right+1)/2]<nums[left]&&nums[(left+right+1)/2]<nums[right])
{
//说明转动次数 小于 n/2
right = (left+right+1)/2; //更新right
}
else
{
left = (left+right+1)/2; //更新left
}
}
return nums[left]; //返回left,最小值
}
};