寻找旋转排序数组中的最小值

题目描述:

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。
示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
 

提示:

n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums 中的所有整数 互不相同
nums 原来是一个升序排序的数组,并进行了 1 至 n 次旋转

作者:LeetCode
链接:https://leetcode.cn/leetbook/read/array-and-string/c3ki5/
来源:力扣(LeetCode)
 

看了一圈评论好像没有特别好的解法,一些算法的复杂度远远达不到logn,关键还有一些人装逼,说这道题有手就行,无语.....

个人的一个解法,算法复杂度为O(log n)

class Solution {
public:
    int findMin(vector<int>& nums) {
        int length =nums.size();

        int right =length -1;
        int left = 0;       //得到左右指针

        //nums的转动次数为1到n之间,也就是2到n-1
        //以 n/2为界限,转动的情况不同



        //对特殊情况进行讨论
        if(length == 1)
        return nums[0];
        if(length ==2)
        {
            if(nums[0]>nums[1])
            return nums[1];
            else
            return nums[0];
        }


        //如果小于(left+right)/2次,中间的数,应该是比两端的数小,而且最小值应该在中间到两端中较大的一端之间(左边),更新right
        //如果大于(left+right)/2次,中间的数,应该是比两端的数大,而且最小值应该就在中间到两端中较小的一端之间(右边),更新left
        //left或者right更新完成之后,从left到right 依然是一个有序但发生了选择的排列,所以可以循环上面的步骤
        //当right大于left的时候,left就是我们要找的那个最小值


        while(right>left)
        {

            if(nums[(right+left+1)/2]>nums[left]&&nums[(right+left+1)/2]<nums[right])
            return nums[left];              //中间的数大于左边且小于右边,说明没有发生旋转,直接返回左端的数

            if(nums[(left+right+1)/2]<nums[left]&&nums[(left+right+1)/2]<nums[right])
            {
                //说明转动次数 小于 n/2
                right = (left+right+1)/2;       //更新right
            }
            else
            {
                left = (left+right+1)/2;       //更新left
            }
        }
        
        return nums[left];            //返回left,最小值

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值