非线性方程求根迭代法

本文介绍了非线性方程求根的迭代法,包括简单迭代法、牛顿迭代和牛顿下山法。通过编程实现这些方法,并探讨了迭代格式选择的重要性,以及初值对迭代速度的影响。实验过程中的代码参考和结果分析,旨在提升将数学知识应用于实际问题的能力。
摘要由CSDN通过智能技术生成

一、写在前面

 实验目的

(1) 熟悉非线性方程求根简单迭代法,牛顿迭代及牛顿下山法
(2) 能编程实现简单迭代法,牛顿迭代及牛顿下山法
(3) 认识选择迭代格式的重要性
(4) 对迭代速度建立感性的认识;分析实验结果体会初值对迭代的影响

 实验内容

这里写图片描述

**本次实验参考公式**

这里写图片描述

二、实验过程
【参考代码】

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double IterationFunction(double x)    //迭代函数
{
    return pow(x+1.0, 1.0/3);
}

double function(double x)    //原函数 f(x)
{
    return x*x*x-x-1;
}

double derivativeFunction(double x)    //导函数 f'(x)
{
    return 3*x*x-1;
}

double Iteration(double x0, double e, int N)    //一般迭代算法
//输入参数: x0 初值, e 精度, N 最大
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值