SVM参数详解

svm参数说明----------------------

如果你要输出类的概率,一定要有-b参数

svm-train training_set_file model_file

svm-predict test_file model_fileoutput_file

自动脚本:python easy.py train_data test_data

自动选择最优参数,自动进行归一化。

对训练集合和测试结合,使用同一个归一化参数。

-c:参数

-g: 参数

-v:交叉验证数

-s svm_type : set type of SVM (default 0)

        0 -- C-SVC

        1 -- nu-SVC

        2 -- one-class SVM

        3 -- epsilon-SVR

        4 -- nu-SVR

-t kernel_type : set type of kernelfunction (default 2)

        0 -- linear: u'*v

        1 -- polynomial: (gamma*u'*v + coef0)^degree

        2 -- radial basis function: exp(-gamma*|u-v|^2)

        3 -- sigmoid: tanh(gamma*u'*v + coef0)

-d degree : set degree in kernel function(default 3)

 

-g gamma : set gamma in kernel function(default 1/num_features)

-r coef0 : set coef0 in kernel function(default 0)

-c cost : set the parameter C of C-SVC,epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC,one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in lossfunction of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB(default 100)

-e epsilon : set tolerance of terminationcriterion (default 0.001)

-h shrinking: whether to use the shrinkingheuristics, 0 or 1 (default 1)

-b probability_estimates: whether to traina SVC or SVR model for probability estimates, 0 or 1 (default 0)(如果需要估计分到每个类的概率,则需要设置这个)

-wi weight: set the parameter C of class ito weight*C, for C-SVC (default 1)

 Thek in the -g option means the number of attributes in the input data.

 

 

libsvm使用误区----------------------

(1)      直接将训练集合和测试集合简单归一化到[0,1]区间,可能导致实验结果很差。

(2)      如果样本的特征数非常多,那么就不必使用RBF核将样本映射到高维空间。

a)        在特征数非常多的情况下,使用线性核,结果已经非常好,并且只需要选择参数C即可。

b)        虽然说RBF核的结果至少比线性核好,前提下搜索整个的空间。

(3)      样本数<<特征数的情况:

a)        推荐使用线性核,可以达到与RBF同样的性能。

(4)      样本数和特征数都非常多:推荐使用liblinear,更少的时间和内存,可比的准确率。

(5)      样本数>>特征数:如果想使用线性模型,可以使用liblinear,并且使用-s 2参数

 

libsvm在训练model的时候,有如下参数要设置,当然有默认的参数,但是在具体应用方面效果会大大折扣。 

Options:可用的选项即表示的涵义如下

-s svm类型:SVM设置类型(默认0)

0 -- C-SVC

1 --v-SVC

2 一类SVM

3 -- e -SVR

4 -- v-SVR 

 

-t 核函数类型:核函数设置类型(默认2)

0 线性:u'v

1 多项式:(r*u'v + coef0)^degree

2  RBF函数:exp(-gamma|u-v|^2)

3 sigmoidtanh(r*u'v + coef0)

 

 

-d degree:核函数中的degree设置(针对多项式核函数)(默认3)

-g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)

-r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)

-c cost:设置C-SVCe -SVRv-SVR的参数(损失函数)(默认1)

-n nu:设置v-SVC,一类SVMv- SVR的参数(默认0.5)

-p p:设置e -SVR 中损失函数p的值(默认0.1)

-m cachesize:设置cache内存大小,以MB为单位(默认40)

-e eps:设置允许的终止判据(默认0.001)

-h shrinking:是否使用启发式,01(默认1)

-wi weight:设置第几类的参数Cweight*C(C-SVC中的C)(默认1)

-v n: n-fold交互检验模式,nfold的个数,必须大于等于2

  其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n

 

当构建完成model后,还要为上述参数选择合适的值,方法主要有Gridsearch,其他的感觉不常用,Gridsearch说白了就是穷举。

 

网格参数寻优函数(分类问题):SVMcgForClass

[bestCVaccuracy,bestc,bestg]=

SVMcgForClass(train_label,train,

cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)

输入:

train_label:训练集的标签,格式要求与svmtrain相同。

train:训练集,格式要求与svmtrain相同。

cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]

gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]

v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3CV过程。

cstep,gstep:进行参数寻优是cg的步进大小,即c的取值为2^cmin,2^(cmin+cstep),,2^cmax,g的取值为2^gmin,2^(gmin+gstep),,2^gmax,默认取值为cstep=1,gstep=1

accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5

输出:

bestCVaccuracy:最终CV意义下的最佳分类准确率。

bestc:最佳的参数c

bestg:最佳的参数g

 

网格参数寻优函数(回归问题):SVMcgForRegress

[bestCVmse,bestc,bestg]=

SVMcgForRegress(train_label,train,

cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)

其输入输出与SVMcgForClass类似,这里不再赘述。


而当你训练完了model,在用它做classificationregression之前,应该知道model中的内容,以及其含义。

 

用来训练的是libsvm自带的heart数据

 

model =

   Parameters: [5x1 double]

     nr_class: 2

      totalSV: 259                   % 支持向量的数目

          rho: 0.0514               %  b

        Label: [2x1 double]     %  classification中标签的个数

        ProbA: []

        ProbB: []

          nSV: [2x1 double]     %  每类支持向量的个数

       sv_coef: [259x1 double]  %   支持向量对应的Wi

 

          SVs: [259x13 double]  %   装的是259个支持向量

 

model.Parameters参数意义从上到下依次为:

-s svm类型:SVM设置类型(默认0)

-t 核函数类型:核函数设置类型(默认2)

-d degree:核函数中的degree设置(针对多项式核函数)(默认3)

-g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数) (默认类别数目的倒数)

-r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)

 

SVM 怎样能得到好的结果

1.   对数据做归一化(simple scaling

2.   应用 RBF kernel 

3.   cross-validationgrid-search 得到最优的c和g

4.   用得到的最优cg训练训练数据

5.   测试


 

关于svmC以及核函数参数设置----------------------

参考自:对支持向量机几种常用核函数和参数选择的比较研究

  

C一般可以选择为:10^t , t=- 4..4就是0.0001 10000

 选择的越大,表示对错误例惩罚程度越大,可能会导致模型过拟合

 

LIBSVM-t用来指定核函数类型(默认值是2)。

0)线性核函数

(无其他参数)

1)多项式核函数

(重点是阶数的选择,即d,一般选择1-111 3 5 7 9 11,也可以选择2,46…

2RBF核函数

(径向基RBF内核,exp{-|xi-xj|^2/均方差},其中均方差反映了数据波动的大小。

参数通常可选择下面几个数的倒数:0.1 0.2 0.4 0.6 0.8 1.6 3.2 6.4 12.8,默认的是类别数的倒数,即1/k2分类的话就是0.5

3sigmoid核函数 又叫做S形内核

两个参数g以及rg一般可选1 2 3 4r0.2 0.4 0.60.8 1

4)自定义核函数

 

常用的四种核函数对应的公式如下:

 

与核函数相对应的libsvm参数:

1)对于线性核函数,没有专门需要设置的参数

2)对于多项式核函数,有三个参数。-d用来设置多项式核函数的最高此项次数,也就是公式中的d,默认值是3-g用来设置核函数中的gamma参数设置,也就是公式中的第一个r(gamma),默认值是1/kk是类别数)。-r用来设置核函数中的coef0,也就是公式中的第二个r,默认值是0

3)对于RBF核函数,有一个参数。-g用来设置核函数中的gamma参数设置,也就是公式中的第一个r(gamma),默认值是1/kk是类别数)。

4)对于sigmoid核函数,有两个参数。-g用来设置核函数中的gamma参数设置,也就是公式中的第一个r(gamma),默认值是1/kk是类别数)。-r用来设置核函数中的coef0,也就是公式中的第二个r,默认值是0


关于cost和gamma

SVM模型有两个非常重要的参数C与gamma。其中 C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差

           gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

          此外大家注意RBF公式里面的sigma和gamma的关系如下

    

        这里面大家需要注意的就是gamma的物理意义,大家提到很多的RBF的幅宽,它会影响每个支持向量对应的高斯的作用范围,从而影响泛化性能。我的理解:如果gamma设的太大,会很小,很小的高斯分布长得又高又瘦, 会造成只会作用于支持向量样本附近,对于未知样本分类效果很差,存在训练准确率可以很高,(如果让无穷小,则理论上,高斯核的SVM可以拟合任何非线性数据,但容易过拟合)而测试准确率不高的可能,就是通常说的过训练;而如果设的过小,则会造成平滑效应太大,无法在训练集上得到特别高的准确率,也会影响测试集的准确率。

此外,可以明确的两个结论是:
结论1:样本数目少于特征维度并不一定会导致过拟合,这可以参考余凯老师的这句评论:
这不是原因啊,呵呵。用RBF kernel, 系统的dimension实际上不超过样本数,与特征维数没有一个trivial的关系。

结论2:RBF核应该可以得到与线性核相近的效果(按照理论,RBF核可以模拟线性核),可能好于线性核,也可能差于,但是,不应该相差太多。
当然,很多问题中,比如维度过高,或者样本海量的情况下,大家更倾向于用线性核,因为效果相当,但是在速度和模型大小方面,线性核会有更好的表现。

老师木还有一句评论,可以加深初学者对SVM的理解:
须知rbf实际是记忆了若干样例,在sv中各维权重重要性等同。线性核学出的权重是feature weighting作用或特征选择 。
以上摘录了:http://blog.sina.com.cn/s/blog_6ae183910101cxbv.html


Grid Search

Grid Search是用在Libsvm中的参数搜索方法。很容易理解:就是在C,gamma组成的二维参数矩阵中,依次实验每一对参数的效果。

                                                    


使用grid Search虽然比较简单,而且看起来很naïve。但是他确实有两个优点:

  1. 可以得到全局最优
  2. (C,gamma)相互独立,便于并行化进行
# SVM Classifier using cross validation  
def svm_cross_validation(train_x, train_y):  
    from sklearn.grid_search import GridSearchCV  
    from sklearn.svm import SVC  
    model = SVC(kernel='rbf', probability=True)  
    param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}  
    grid_search = GridSearchCV(model, param_grid, n_jobs = 8, verbose=1)  
    grid_search.fit(train_x, train_y)  
    best_parameters = grid_search.best_estimator_.get_params()  
    for para, val in list(best_parameters.items()):  
        print(para, val)  
    model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)  
    model.fit(train_x, train_y)  
    return model  


SVM有如下主要几个特点:

(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;
(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;
(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量;
(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。
它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。
从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,
大大简化了通常的分类和回归等问题; (5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,
而不是样本空间的维数,这在某种意义上避免了“维数灾难”。
(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,
而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。
这种“鲁棒”性主要体现在:
①增、删非支持向量样本对模型没有影响; ②支持向量样本集具有一定的鲁棒性;
③有些成功的应用中,SVM 方法对核的选取不敏感
两个不足:
(1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,
而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算
将耗费大量的机器内存和运算时间。
针对以上问题的主要改进有
J.Platt的SMO算法、
T.Joachims的SVM、
C.J.C.Burges等的PCGC、
张学工的CSVM
以及O.L.Mangasarian等的SOR算法
(2) 用SVM解决多分类问题存在困难
经典的支持向量机算法只给出了二类分类的算法,
而在数据挖掘的实际应用中,一般要解决多类的分类问题。
可以通过多个二类支持向量机的组合来解决。
主要有
一对多组合模式、一对一组合模式和SVM决策树;
再就是通过构造多个分类器的组合来解决。
主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。
如:
与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页