机器学习系列十二:支持向量机(SVM)

一、算法原理

支持向量机是最大化分类间隔的线性分类器,使用核函数可以解决非线性问题。

1.数学建模

(1)决策面方程

(2)分类间隔方程

(3)约束条件

(4)线性SVM优化问题描述

(5)拉格朗日函数

(6)KKT条件

(7)对偶问题求解

(8)SMO算法

2.松弛向量与软间隔最大化

3.核函数

4.多类分类之SVM

关于SVM的原理,已经有很多优秀的博客,不再重复造轮子了。

https://blog.csdn.net/c406495762/article/details/78072313

https://blog.csdn.net/zouxy09/article/details/17291543

https://blog.csdn.net/v_july_v/article/details/7624837#t29

二、算法实践

1.实现SVM类,对Iris数据集中的前两种花进行分类。在处理数据集的过程中,将两两种换的类别处理为1和-1的标签。

from math import exp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = df.iloc[:100,[0,1,-1]]
    data = np.array(data)
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
    return data[:,:2],data[:,-1]



class SVM:
    def __init__(self, max_iter=100, kernel="linear"):
        self.max_iter = max_iter
        self._kernel = kernel

    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0

        #将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        #松弛变量
        self.C = 1.0

    def _KKT(self, i):
        y_g = self._g(i)*self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1

    #g(x) 预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
        return r

    #核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k]*x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k]*x2[k] for k in range(self.n)])+1) ** 2
        return 0

    #E(x) 为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]

    def _init_alpha(self):
        #外层循环首先遍历所有满足0<a<C的样本点,检查是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        #否则遍历整个训练集
        non_satisify_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisify_list)

        for i in index_list:
            if self._KKT(i):
                continue

            E1 =self.E[i]
            #如果E2是+,选择最小的;如果E2是-的,选择最大的;保证|E1-E2|最大
            if E1 >= 0:
                j = min(range(self.m), key = lambda x: self.E[x])
            else:
                j = max(range(self.m), key = lambda x: self.E[x])
            return i, j

    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha

    def fit(self, features, labels):
        self.init_args(features, labels)

        for t in range(self.max_iter):
            #train
            i1, i2 = self._init_alpha()

            #边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1] + self.alpha[i2] -self.C)
                H = min(self.C, self.alpha[i1] + self.alpha[i2])
            else:
                L = max(0, self.alpha[i2] - self.alpha[i1])
                H = min(self.C, self.alpha[i1] + self.alpha[i2])

            E1 = self.E[i1]
            E2 = self.E[i2]
            #eta = K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                continue
            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
            alpha2_new = self._compare(alpha2_new_unc, L, H)

            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] -alpha2_new)

            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b

            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                b_new = (b1_new + b2_new) / 2

            #更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new

            self.E[i1] = self._E(i1)
            self.E[i2] = self._g(i2)

        return 'train done!'

    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])

        return 1 if r > 0 else -1

    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)

    def _weight(self):
        #linear model
        yx = self.Y.reshape(-1, 1) * self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w



if __name__ == '__main__':
    X,y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    svm = SVM(max_iter=200)
    svm.fit(X_train, y_train)
    score = svm.score(X_test, y_test)
    print(score)
    w = svm._weight()
    print(w)

2.sklearn实现

官方英文文档手册:http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

sklearn.svm模块提供了很多模型供我们使用,本文使用的是svm.SVC,它是基于libsvm实现的。

class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0,
shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None)[source]

参数说明如下:

  • C:惩罚项,float类型,可选参数,默认为1.0,C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确率越高,但是泛化能力降低,也就是对测试数据的分类准确率降低。相反,减小C的话,容许训练样本中有一些误分类错误样本,泛化能力强。对于训练样本带有噪声的情况,一般采用后者,把训练样本集中错误分类的样本作为噪声。
  • kernel:核函数类型,str类型,默认为’rbf’。可选参数为: ’linear’:线性核函数;‘poly’:多项式核函数;‘rbf’:径像核函数/高斯核;‘sigmod’:sigmod核函数;‘precomputed’:核矩阵;precomputed表示自己提前计算好核函数矩阵,这时候算法内部就不再用核函数去计算核矩阵,而是直接用你给的核矩阵,核矩阵需要为n*n的。
  • degree:多项式核函数的阶数,int类型,可选参数,默认为3。这个参数只对多项式核函数有用,是指多项式核函数的阶数n,如果给的核函数参数是其他核函数,则会自动忽略该参数。
  • gamma:核函数系数,float类型,可选参数,默认为auto。只对’rbf’ ,’poly’ ,’sigmod’有效。如果gamma为auto,代表其值为样本特征数的倒数,即1/n_features。
  • coef0:核函数中的独立项,float类型,可选参数,默认为0.0。只有对’poly’ 和,’sigmod’核函数有用,是指其中的参数c。
  • probability:是否启用概率估计,bool类型,可选参数,默认为False,这必须在调用fit()之前启用,并且会fit()方法速度变慢。
  • shrinking:是否采用启发式收缩方式,bool类型,可选参数,默认为True。
  • tol:svm停止训练的误差精度,float类型,可选参数,默认为1e^-3。
  • cache_size:内存大小,float类型,可选参数,默认为200。指定训练所需要的内存,以MB为单位,默认为200MB。
  • class_weight:类别权重,dict类型或str类型,可选参数,默认为None。给每个类别分别设置不同的惩罚参数C,如果没有给,则会给所有类别都给C=1,即前面参数指出的参数C。如果给定参数’balance’,则使用y的值自动调整与输入数据中的类频率成反比的权重。
  • verbose:是否启用详细输出,bool类型,默认为False,此设置利用libsvm中的每个进程运行时设置,如果启用,可能无法在多线程上下文中正常工作。一般情况都设为False,不用管它。
  • max_iter:最大迭代次数,int类型,默认为-1,表示不限制。
  • decision_function_shape:决策函数类型,可选参数’ovo’和’ovr’,默认为’ovr’。’ovo’表示one vs one,’ovr’表示one vs rest。
  • random_state:数据洗牌时的种子值,int类型,可选参数,默认为None。伪随机数发生器的种子,在混洗数据时用于概率估计。
#Author zsl
from math import exp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = df.iloc[:100,[0,1,-1]]
    data = np.array(data)
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
    return data[:,:2],data[:,-1]

if __name__ =="__main__":
    X,y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
    clf = SVC(kernel='rbf')
    clf.fit(X_train, y_train)
    score = clf.score(X_test, y_test)
    print(score)

三、算法总结

优点

  • 可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。
  • 可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。
  • SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。

缺点

  • 对参数调节和和函数的选择敏感。
  • 如果特征维度远大于样本个数,SVM表现一般
  • SVM在样本巨大且使用核函数时计算量很大
  • 非线性数据的核函数选择依旧没有标准
  • SVM对缺失数据敏感 

四、面试题

1.SVM与LR的联系与区别?

1)损失函数
    SVM是hinge损失
    LR是log损失
2)输出
    LR给出了后验概率
    SVM只给出0或1,也就是属于哪一个类别
3)异常值
    LR对异常值敏感;SVM相对不敏感,泛化能力好
4)训练集大小
    较小的训练集更适合SVM。
    SVM的参数优化方法是先转为对偶问题再使用SMO算法,最坏情况下的时间复杂度是O(n^2),并不适合在大规模数据集上做分类。
    另外,在使用核技巧,例如RBF时,特征会升高至无限维,因此其计算量也变得很大。
5)LR用到所有的样本点来寻找分割面;SVM只用到少数靠近支持面的几个点。
6)非线性处理方式
    LR靠特征组合高次项;SVM也可以组合,但更多使用核函数
7)LR较为简单,可以适用于大规模线性分类;SVM较复杂,但是理论支撑完备,
8)SVM只考虑支持向量

2.SVM的原理是什么?

SVM是一种二类分类模型。它的基本模型是在特征空间中寻找间隔最大化的分离超平面的线性分类器。(间隔最大是它有别于感知机)

(1)当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;

(2)当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机; 

(3)当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。

3.为什么要将求解SVM的原始问题转换为其对偶问题?

(1)是对偶问题往往更易求解(当我们寻找约束存在时的最优点的时候,约束的存在虽然减小了需要搜寻的范围,但是却使问题变得更加复杂。为了使问题变得易于处理,我们的方法是把目标函数和约束全部融入一个新的函数,即拉格朗日函数,再通过这个函数来寻找最优点。)

(2)自然引入核函数,进而推广到非线性分类问题。

4.SVM如何处理多分类问题?

一般有两种做法:一种是直接法,直接在目标函数上修改,将多个分类面的参数求解合并到一个最优化问题里面。看似简单但是计算量却非常的大。

另外一种做法是间接法:对训练器进行组合。其中比较典型的有一对一,和一对多。

一对多,就是对每个类都训练出一个分类器,由svm是二分类,所以将此而分类器的两类设定为目标类为一类,其余类为另外一类。这样针对k个类可以训练出k个分类器,当有一个新的样本来的时候,用这k个分类器来测试,那个分类器的概率高,那么这个样本就属于哪一类。这种方法效果不太好,bias比较高。

一对一法(one-vs-one),针对任意两个类训练出一个分类器,如果有k类,一共训练出C(2,k) 个分类器,这样当有一个新的样本要来的时候,用这C(2,k) 个分类器来测试,每当被判定属于某一类的时候,该类就加一,最后票数最多的类别被认定为该样本的类。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值