SVM支持向量机的使用和参数详解

 一、支持向量机

支持向量机(Support Vector Machines,SVM)是一种常用的监督学习算法,用于分类和回归问题。在分类任务中,SVM试图找到一个最优超平面,将不同类别的样本分隔开来。

二、SVM的使用及参数含义 

下面是SVM的使用方法和一些常见参数的含义:

  1. 数据准备:首先,你需要准备带有标签的训练数据集,其中每个样本包含一组特征和对应的标签。

  2. 特征预处理:在应用SVM之前,通常需要对特征进行标准化归一化处理,以确保不同特征的尺度一致,避免某些特征对分类结果的影响更大。

  3. 创建模型:使用机器学习库(如scikit-learn)来创建一个SVM分类器对象。在scikit-learn中,可以使用SVC类来实现SVM。                                                                                           class sklearn.svm.svc(c=0.1,kernel='linear',gamma='auto')

  4. 参数选择:SVM中的一些重要参数如下:

    • C参数(正则化参数):c越大对误分类的惩罚越大,这样对训练集的准确率很高,但是泛化能力会很弱;c越小对误分类的惩罚越小,允许出错将出错的数据当作噪声点,泛化能力较强,建议通过交叉验证来选择

    • 核函数:SVM可以使用不同的核函数来从低维特征空间将数据映射到高维特征空间。常用的核函数有linear线性核(Linear Kernel)、poly多项式核(Polynomial Kernel)和rbf径向基函数(Radial Basis Function,RBF Kernel),多数情况下都会选择默认的rbf径向基函数

    • gamma参数(对RBF核函数有效):它控制了样本点对决策边界的影响。较小的gamma值将导致决策边界受到较远样本点的影响,而较大的gamma值将导致决策边界只受到较近样本点的影响。换句话说,gamma值越小,过拟合风险越低,反之则过拟合风险越高。在sklearn0.21版本中gamma值默认为‘auto’,实际系数就是1/n_features,也就是如果有10个特征,那么gamma值就为0.1;而在sklearn0.22版本中gamma默认为‘scale’,此时gamma=1/(n_features*X.var()),其中X.var()表示样本所有特征的平均值。建议通过交叉验证来选择。

    • degree:整型,一般默认三维,多项式核函数poly选择时默认啊是三维,选择其他函数时忽略。

    • cachez_size:核函数cache缓存大小,默认是200MB。

  5. 模型训练:使用准备好的训练数据对SVM分类器进行训练,即通过调用fit方法传入特征和标签。

  6. 模型预测:使用训练好的SVM分类器对新的未知样本进行预测,即通过调用predict方法传入特征数据。

相关案例可以参考笔者的另一篇文章: svm的代码实现

三、总结 

SVM是一个强大且灵活的分类器,可以处理线性和非线性问题。然而,在实际使用中,需要根据具体问题和数据的特点来选择适当的参数和核函数进行调整,以获得最佳的性能和准确性。

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 支持向量机(Support Vector Machine, SVM)是一种监督学习算法,旨在寻找最佳的超平面,将不同类别的数据分开。从分类问题的角度来看,SVM要求找到一个超平面,使得不同类别的样本点在该超平面两侧,同时离该超平面的距离最大。该最大距离被称为margin,而最佳的超平面被称为最大间隔超平面。 SVM的核心思想是将数据映射到高维空间中,使得数据在高维空间中更容易线性可分。在高维空间中,由于数据点增多,出现维度灾难的问题,而此时SVM可以通过核函数来避免该问题。 在求解最大间隔超平面时,SVM依赖于一些向量,称为支持向量。这些支持向量是最接近最大间隔超平面的样本点,它们对求解最大间隔超平面起到了至关重要的作用。 SVM可以应用于二分类、多分类以及回归问题,并且在实际应用中表现出色。在实际使用中,需要根据具体问题选择适当的核函数,并且需要对超参数进行调整。此外,还需要注意数据的标准化处理,以避免不同维度的数据误导模型。 总之,SVM是一种强大的分类器,具有多种核函数可供选择,能够适用于不同类型数据的分类问题。 ### 回答2: 支持向量机SVM)是一种监督学习算法,可以用于分类和回归问题。它的优点是可以处理非线性分类问题,并且对于数据集中的噪声有较好的鲁棒性。SVM利用最大化分类边界来进行分类,最终得到的分类器是一个高维空间中的超平面。 SVM的原理是基于寻找最优超平面,这个超平面能够把不同类别的样本点分开。在二维平面上,这个超平面可以是一条直线,但是在高维空间中,它是一个超平面。SVM通过最大化边缘来寻找最优的超平面。边缘是一个超平面到两边最近样本点的距离,它表明了模型的泛化能力,即分类器对于新的数据的表现能力。 支持向量机的核心思想是寻找一条最大间隔的线性分割超平面。在非线性分类任务中,使用核方法将特征向量转换为高维空间中的特征向量。在这个高维空间中,数据点可以被更好地分割,即可能会出现线性可分的情况。 关键的问题是如何解决分割垂直于某个维度的问题,此时支持向量机利用核函数的技巧将数据集映射到高维空间,并在这个高维空间中采用线性可分的方法来进行分类。通常情况下,核函数常用的有线性核、多项式核和径向基函数核。 其中,径向基函数核(RBF kernel)是最常用的核函数之一。这个核函数可以将数据点映射到一个无限维的特征空间上。径向基函数核使用一个参数gamma来决定核函数的变化速度。当gamma的值很小的时候,核函数的变化会很慢,分类的边界将会很宽。当gamma的值很大的时候,核函数的变化会很快,分类的边界将会很窄。 SVM的优化问题可以通过拉格朗日乘子法来解决。可以使用拉格朗日乘子来构造一个拉格朗日函数,并使用约束条件来推导对偶形式的SVM问题。这个对偶形式的问题可以使用高效的SMO算法来求解。 SVM是一种强大的分类方法,它适用于许多不同的应用场景,并在许多任务中实现了很好的结果。支持向量机具有较好的泛化性能、能够处理高维数据、适用于不同类型的输入数据,并且能够快速训练分类器。 ### 回答3: SVM是一种二分类模型,它的主要思想是通过线性或非线性的方式找到最优的超平面,将不同类别的数据点分开。SVM支持向量机通过选择支持向量,来定义最优的超平面。支持向量是离超平面最近的数据点,它们对最终分类结果起到决定性的作用。在选取支持向量的过程中,SVM支持向量机尝试选择最少的支持向量,以达到泛化能力强的效果。 SVM支持向量机的分类器可以采用不同的核函数进行拟合,从而实现非线性分类。其中,常用的核函数包括线性核、多项式核、高斯核等。利用核函数的基本原理,我们可以把数据从原本空间映射到更高维的空间中。在高维空间,数据点在非线性情况下更容易区分,从而提高了分类的准确率。 SVM支持向量机的训练过程可以利用现有的优化算法求解,例如序列最小优化算法(SMO)和改进的SMO算法等。这些算法通过不断迭代优化模型参数,直至达到最优的分类效果。在模型训练完成之后,我们可以利用模型进行分类预测,从而实现新数据的分类。 总之,SVM支持向量机是一种基于分类边界找寻的算法,在分类效果、泛化能力和计算效率等方面具有优势,因此在分类领域有着广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值