凸优化学习笔记02(仿射维数、相对内部与相对边界,子空间)

本文介绍了仿射维数的概念及其与子空间的关系,并详细解释了相对内部、相对边界等概念,帮助读者理解线性代数中的这些关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【ps: 以下内容中红色标记的术语会在文章最后提供解释】

仿射维数

定义:集合C的仿射维数为其仿射包的维数。

【通俗理解】仿射包包含集合C中任意点的线性组合。所有线性组合最终组成的空间是几维,仿射包就是几维。比如R^2上的单位圆环,任意点的线性组合都在一个平面上,即单位圆环的仿射维数是2维。

相对内部与相对边界

相对内部

规范定义

定义:若集合 C \subseteq R^n的仿射维数小于n(比如一个正方形在三维空间R^3内),那么集合C在仿射集合 \mathbf{aff} C \neq R^n中。我们称集合C的相对内部为 \mathbf{aff} C 的内部,记为\mathbf{relint} C

数学表达:\mathbf{relint} C = \begin{Bmatrix} x \in C | B(x,r) \cap \mathbf{aff} C \subseteq C \; for \; some \; r > 0\end{Bmatrix}, 

其中  B(x,r)=\begin{Bmatrix} y | \left \| y-x \right \|<r \end{Bmatrix}, 即半径为r,中心为x并由范数|| ||定义的球。

具体例子

举个简单的例子,比如集合C是一个正方形(二维图形),表达为

C = \left\{ x \in \mathbf{R}^3 | -1 \leq x_1 \leq 1, -1 \leq x_2 \leq 1, x_3 = 0 \right\}

显然,它的仿射包就是x_3= 0 对应的二维平面,表达为

\mathbf{aff} C = \left\{ x \in \mathbf{R}^3 | x_3 = 0 \right\}

现在要求集合C的相对内部,那就得先找B(x,r),它的形状是个球,有两个参数x和r。这里的x是在集合C里的,半径r的值可任意调整。可以想象,B(x,r) \cap \mathbf{aff} C其实就是球在x_3= 0平面上的截面,形状是半径为r的圆形。

一个圆形所有点都要在集合C内,如果x取的是集合C的边界,比如\left\{ (x_1, x_2) | x_1 = 1, -1 \leq x_2 \leq 1 \right\},那无论半径r取多小,都会存在圆形的某个点不在集合C内;而如果x取的是集合C内部的点\left\{ x \in \mathbf{R}^3 | -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0 \right\},那就不存在这个问题了。

因此,集合C的相对内部为

\mathbf{relint} C = \left\{ x \in \mathbf{R}^3 | -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0 \right\}

相对边界

定义:集合C的相对边界为 \mathbf{cl} \; C \setminus \mathbf{relint}C\mathbf{cl}\; C 表示C的闭包。

【通俗理解】简单理解就是,把集合C比作裱画,相对内部就是画像,画像的画框即为相对边界。相对边界一般为集合C取值范围的上下界。

子空间

什么是子空间?

这里的子空间指的是线性代数中的子空间,定义如下[1]:

设W为数域F上的n维线性空间V的子集合(即W \in V),若W中的元素满足

(1)若\forall \alpha, \beta \in W,则\alpha + \beta \in W;(对加法是封闭的,即加法结果仍在集合W内)

(2)若\forall \alpha \in W, \lambda \in F,则\lambda \alpha \in W。(对数乘也是封闭的,即数乘结果仍在集合W内)

  补充:子空间中必须包含零向量(若\forall \alpha \in W,则\alpha -\alpha \in W

易证W构成数域F上的线性空间。由W \in V得,W是线性空间V的一个线性子空间,简称子空间。

子空间与仿射集合是什么关系?

1. 如果C是一个仿射集合,且 x_0 \in C,则集合 V = C-x_0=\begin{Bmatrix} x-x_0|x \in C \end{Bmatrix},是一个与仿射集合C相关联的子空间[证明见注]。

2. 定义仿射集合 C 的维数为子空间 V 的维数,其中 x_0 是 C中的任意元素。

3. 直观理解:仿射集合与子空间的区别 (取自[2]的图),子空间必过零点

[] 证明:

设 v_1,v_2 \in V, \alpha,\beta \in R, 则有 v_1 +x_0 \in C, v_2 +x_0 \in C.

\because C 是仿射集合

且 \alpha +\beta +(1-\alpha-\beta)=1

\therefore \alpha v_1 + \beta v_2 +x_0 = \alpha (v_1+x_0) + \beta (v_2+x_0) +(1-\alpha-\beta)x_0 \in C

\therefore \alpha v_1 + \beta v_2 \in V=C-x_0

\alpha v_1 + \beta v_2 \in V 满足子空间(1)(2)条件,证毕。

术语解释

范数:举个例子,在二维的欧氏几何空间中定义欧氏范数。在该矢量空间中,元素被刻画为一个从原点出发,带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数[3]。

数域:设P是由一些复数组成的集合,其中包括0和1。若P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域[4]。

参考文献

[1] 子空间_百度百科

[2] 仿射集合与子空间的关系_Tomcat的专栏-CSDN博客

[3] 范数_百度百科

[4] 数域_百度百科

[美]S. Boyd, L. Vandenberghe. 凸优化[M]. 王书宁, 许鋆, 黄晓霖. 北京: 清华大学出版社, 2013.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值