凸优化读书笔记04(范数球、范数锥、多面体,半正定锥)

范数球和范数锥

范数球

数学形式:\begin{Bmatrix} x|\left \| x-x_c \right \| \leq r \end{Bmatrix}r 为半径,x_c 为球心。

特点:范数球是凸集。

通俗理解:常见的球是由Euclid范数定义的(x-x_c)^2=r^2,这里将定义规则一般化,不局限于Euclid范数。

范数锥

数学形式:C = \begin{Bmatrix} (x,t) | \left \| x \right \| \leq t \end{Bmatrix} \subseteq R^{n+1}

特点:范数锥是凸锥。

例子:二阶锥,由Euclid范数定义的范数锥,即

C = \begin{Bmatrix} (x,t) \in R^{n+1} | \left \| x \right \|_2 \leq t \end{Bmatrix}=\begin{Bmatrix} \begin{bmatrix} x\\ t \end{bmatrix}| \begin{bmatrix} x\\ t \end{bmatrix}^T \begin{bmatrix} I & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} x\\ t \end{bmatrix} \leq 0,t \geq 0 \end{Bmatrix}

           下图显示了R^3上的一个二阶锥。

多面体

定义:有限个线性等式和不等式的解集。或理解为有限个半空间或超平面的解集。

表示式:\rho = \begin{Bmatrix} x | a_j^Tx \leq b_j, j=1,...,m,c_j^Tx = d_j,j=1,...,p \end{Bmatrix}

例子:仿射集合(例如子空间、超平面、直线)、射线、线段以及半空间。

特点:多面体是凸集。

直观理解:下图显示一个由五个半空间的交集定义的多面体。

单纯形 — 一类重要多面体

定义:设 k+1 个点 v_0,...,v_k \in R^n 仿射独立,即v_1-v_0,...,v_k-v_0 线性独立,那么这些点决定了一个单纯形。

形式:C = conv\begin{Bmatrix} v_o,...v_k \end{Bmatrix} = \begin{Bmatrix} \theta_0v_0 + ...+ \theta_kv_k | \theta \succ 0, \mathbf{1}^T\theta = 1 \end{Bmatrix} 

其中 \mathbf{1} 表示所有分量均为一的向量。此单纯形仿射维数为K,故也称为 R^n 空间中的k维单纯形。

例子:

a. 单位单纯形

由零向量和单位向量 0,e_1,...,e_n \in R^n 决定的 n 维单纯形。它可表示为下列向量的集合,

x \succ 0, \mathbf{1}^Tx \leq 1

b. 概率单纯形

由单位向量 e_1,...,e_n \in R^n 决定的 n-1 维单纯形。它可表示为下列向量的集合, 

x \succ 0, \mathbf{1}^Tx = 1

这里的 x_i 可理解为第 i 个元素的概率。

与多面体的关系:可用多面体来描述单纯形。

多面体的凸包描述

这里使用凸包表达式的扩展表示:\begin{Bmatrix} \theta_1v_1+...+\theta_kv_k|\theta_1+...+\theta_m =1, \theta_i \geq 0, i=1,...,k \end{Bmatrix}

其中 m \leq k。上式可解释为点 v_1,...,v_m 的凸包加上点 v_{m+1},...,v_k 的锥包。多面体即可表示为上述形式。

半正定锥

定义:若用 S^n 表示对称 n \times n 矩阵的集合,即 S^n = \begin{Bmatrix} X \in R^{n \times n}|X=X^T \end{Bmatrix},则对称半正定矩阵集合表示为 S^n_+ = \begin{Bmatrix} X \in S^n | X \succeq 0 \end{Bmatrix},半正定锥集合即为 S^n_+

特点:集合S^n_+是一个凸锥。

术语解释

仿射独立:以下列举的例子均为仿射独立:1)二维空间里任意三点不共线  2)三维空间任意四点不共面  3)k维空间任意k+1点不在同一个k维空间里

参考文献

[美]S. Boyd, L. Vandenberghe. 凸优化[M]. 王书宁, 许鋆, 黄晓霖. 北京: 清华大学出版社, 2013.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值