范数球和范数锥
范数球
数学形式:, 为半径, 为球心。
特点:范数球是凸集。
通俗理解:常见的球是由Euclid范数定义的,这里将定义规则一般化,不局限于Euclid范数。
范数锥
数学形式:
特点:范数锥是凸锥。
例子:二阶锥,由Euclid范数定义的范数锥,即
下图显示了上的一个二阶锥。
多面体
定义:有限个线性等式和不等式的解集。或理解为有限个半空间或超平面的解集。
表示式:
例子:仿射集合(例如子空间、超平面、直线)、射线、线段以及半空间。
特点:多面体是凸集。
直观理解:下图显示一个由五个半空间的交集定义的多面体。
单纯形 — 一类重要多面体
定义:设 个点 仿射独立,即 线性独立,那么这些点决定了一个单纯形。
形式:
其中 表示所有分量均为一的向量。此单纯形仿射维数为K,故也称为 空间中的k维单纯形。
例子:
a. 单位单纯形
由零向量和单位向量 决定的 维单纯形。它可表示为下列向量的集合,
b. 概率单纯形
由单位向量 决定的 维单纯形。它可表示为下列向量的集合,
这里的 可理解为第 个元素的概率。
与多面体的关系:可用多面体来描述单纯形。
多面体的凸包描述
这里使用凸包表达式的扩展表示:
其中 。上式可解释为点 的凸包加上点 的锥包。多面体即可表示为上述形式。
半正定锥
定义:若用 表示对称 矩阵的集合,即 ,则对称半正定矩阵集合表示为 ,半正定锥集合即为 。
特点:集合是一个凸锥。
术语解释
仿射独立:以下列举的例子均为仿射独立:1)二维空间里任意三点不共线 2)三维空间任意四点不共面 3)k维空间任意k+1点不在同一个k维空间里
参考文献
[美]S. Boyd, L. Vandenberghe. 凸优化[M]. 王书宁, 许鋆, 黄晓霖. 北京: 清华大学出版社, 2013.