支持向量机(SVM)
支持向量机(SVM)将输入映射到高维特征空间。
输入
• 数据:输入数据集
• 预处理器:预处理方法
输出
• 学习器:线性回归学习算法
- 模型:训练好的模型
• 支持向量:用作支持向量的实例
支持向量机(SVM)是一种机器学习技术,通过超平面划分属性空间,最大化不同类别或类值实例之间的间隔。该技术通常能提供卓越的预测性能。Orange 集成了 LIBSVM 包的流行 SVM 实现,本小部件是其图形用户界面。
对于回归任务,SVM 在高维特征空间中使用 ε-不敏感损失函数 进行线性回归。其估计精度取决于参数 C 和核函数参数的合理设置。该小部件基于支持向量机回归输出类别预测。
本小部件适用于分类和回归任务。