Orange3实战教程:模型---支持向量机

支持向量机(SVM)

支持向量机(SVM)将输入映射到高维特征空间。

输入

数据:输入数据集
预处理器:预处理方法

输出

学习器:线性回归学习算法

  • 模型:训练好的模型
    支持向量:用作支持向量的实例

支持向量机(SVM)是一种机器学习技术,通过超平面划分属性空间,最大化不同类别或类值实例之间的间隔。该技术通常能提供卓越的预测性能。Orange 集成了 LIBSVM 包的流行 SVM 实现,本小部件是其图形用户界面。

对于回归任务,SVM 在高维特征空间中使用 ε-不敏感损失函数 进行线性回归。其估计精度取决于参数 C 和核函数参数的合理设置。该小部件基于支持向量机回归输出类别预测。

本小部件适用于分类和回归任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值