深度学习任务通常需要大量的计算资源和存储空间,因此在单个计算机上处理大规模数据集和复杂模型可能会非常困难。为了克服这个问题,分布式计算成为了一种常见的解决方案。PyTorch 提供了分布式训练的功能,可以帮助我们在多台计算机上并行地训练深度学习模型。本文将介绍 PyTorch 分布式训练的基础概念,并提供相应的源代码示例。
- 初始化分布式环境
在开始分布式训练之前,我们需要初始化分布式环境。PyTorch 提供了torch.distributed.init_process_group()
函数来完成此任务。这个函数需要指定分布式后端和通信方式。下面是一个示例:
import torch
import torch.distributed as dist
def main():