- 对于理工科学生来说,数学很重要,离开对于数学系统的学习之后,接触到的数学知识大多是碎片化的,所以总结很重要。
数学杂记
-
麦克劳林公式
-
泰勒展开式
麦克劳林展开式时泰勒展开式的特殊形式,表明了任何函数(必须n阶可导,而且n要取到所有的正整数)都能用多项式表示 -
傅里叶级数
系数 a n a_n an和 b n b_n bn利用正交性证明得到,首先两边同时乘 c o s / s i n ( n w t ) cos/sin(nwt) cos/sin(nwt)然后一个周期内积分。随后解得 a n a_n an和 b n b_n bn。
1、设想可以把一个周期函数f(t)通过最简单的一系列正弦函数来表示,即5式;
2、通过变形后用三角级数(含sin和cos)来表示;
3、通过积分,把各未知系数用f(t)的积分式来表达;
4、最后得到的4个表达式就是傅里叶级数公式。
-
正交
-
矩阵的迹(trace)
-
矩阵的特征值()
-
矩阵的转置
-
数据融合Data Fusion
数据融合技术将来自多个传感器(信息源)的数据和相关数据的信息相结合,以实现比单独使用单个传感器(信息源)所能实现的更高的准确性和更具体的推论 -
范数
之前从未接触过范数,只是在偶然间在机器学习的起步时上百度查过。现在遇到h-infinity滤波器,涉及到h-2范数和h-∞范数,看来是不得不学习一下了。
范数我最开始的印象是:数学里面的概念,应用中的二维平面的欧氏几何距离似乎就是二维向量的l-2范数,其他的就不太清楚了…
向量x的lp范数定义是:
-
矩阵特征值eigenvalue,n阶方阵一定有n个特征值。
-
线性空间由两种操作封闭:缩放、和,所以在向量的线性组合后,所产生的向量仍然在先前向量组成的线性空间中。
-
LU分解,分解成下三角矩阵和上三角矩阵。扩展后的一般形式为PLU分解,多出一个P矩阵。
-
满秩分解
-
皮尔森相关系数
-
交替方向乘子法(ADMM)
-
为什么在计算样本方差时,是除以n-1而不是n呢?因为样本均值是一个期望为原随机变量的均值的随机变量,因此在计算样本方差是,导致除以n的样本方差公式的期望值会小于原随机变量的方差。总而言之即除以n-1的目的是得到样本方差的无偏估计。