现代光学基础

  • 参考教材:《现代光学基础》第二版 钟锡华编著
  • 光学实际上与信息学存在紧密的联系,加上我的方向实际上属于光信息处理,所以纳入数字信号处理中

光学简介

惠更斯原理

  • 内容(1690/1679,《论光》):将光的传播描述为光扰动的传播,定义光扰动同时到达的空间曲面为波前/波面(wave-front),波前的每一点可以看作一个新扰动中心(子波源/次波源),次波源向四周激发次波,下一时刻的波前为这些大量次波面的共切面/包络面,次波中心和次波面上的切点方向给出该位置的波传播方向。
  • 核心:次波源
  • 作用:解释波的传播(一直某时刻波前,可以推导下时刻波前),将光线的偏折与光速变化联系起来
  • 局限性:无法回答光振幅/光强度(折射与反射振幅怎么分?)问题,无法回答光相位的传播问题(未空间周期性 λ \lambda λ的概念)
  • 几何光学三大定律的解释:详细解释这里不做展开,讲一个故事,按照惠更斯原理来讲能够得到光线偏折与光速变化之间的联系,当时由于牛顿支持的微粒说也能够队这种光线偏折现象做出解释,但是得出的结果与惠更斯原理相反,但是由于当时技术有限,没法做光速测量实验,在1850年,测量了光在空气和水中的光速之后才验证了惠更斯原理,同时证认了光的波动性理论。

折射率与色散

  • 来源:是介质材料光学性能的重要参数,源于折射定律(实验定律)

s i n i 1 s i n i 2 = n 2 n 1 = k \frac{sini_1}{sini_2} = \frac{n_2}{n_1} = k sini2sini1=n1n2=k

  • 折射率与光速:折射定律告诉我们,光线偏折中存在某个不变量,我们一般认为这种不变量与材料本身的性质有关(定义为折射率);在解释折射定律时,我们看到光线偏折与光速变化有关;因此可以得到光速变化与折射率之间的关系。在现在我们知道:
    n = c v n = \frac{c}{v} n=vc

  • 色散:同一介质中,不同频率的光的折射率不同,因此白光同一角度入射会折射出不同颜色的光。在这里不同介质中,频率是不变量决定颜色,波长和波速是变化量。

  • 光程与相位:光程定义为光传播的几何长度和介质折射率的乘积,等效为光在相同时间内在真空中传播的距离。光程差对应光的传播(时延),因此对应光的相位延迟。

费马原理

  • 内容:光从一点传播到另一点之间传播,按照光程为平稳值得路径传播。在泛函中,平稳值表示变分(理解为泛函的微分)为0,有三种基本涵义:极小值(绝大部分)、极大值(个例)、常数(属于极大/极小,成像中物象关系)
  • 作用(几何光学范畴):研究光线传播问题
  • 几何光学三大定律的解释:略
  • 成像:首先回答为什么使用光程为常数/光程不变性原理进行成像分析,从一点到另一点的众多光线(已知)无法是全是极大值或者极小值,只能全相等/为常数。基于光程不变性可以进行成像分析,这里不做细细的展开,我们考虑在无法严格成像的情况下(齐明点严格成像,等光程面,唯一平面镜任意点严格成像),我们考虑近似成像的条件(本质近似等光程)是:球面傍轴近似成像。注意区分点严格成像和严格成像两个概念区分。
  • 阿贝正弦定理(后面还有阿贝成像原理):

变折射率的几个有趣现象

  • 海市蜃楼:寒冷海面上空,海拔上升气温明显上升,大气射射率明显减少。
IMG_0002
  • 沙洲神泉:炙热地面上空,高度上升温度明显下降,空气折射率增加。
IMG_0003

几何光学的限度

  • 费马原理是几何光学的理论基础,因此费马原理的限度限于几何光学的限度,无法解释衍射等现象。可以认为几何光学和波动光学是两种经典条件下的光学世界观,波动光学的理论基础来源于麦克斯韦方程组,几何光学是 λ \lambda λ 趋于零时的波动光学的近似。

总结

本章主要内容是光学的基本认识,从一些古老的光学思想来解释几何光学三大定律:均匀介质中的光沿直线传播、折射定律、反射定律。
惠更斯提出了惠更斯原理,其中最基本的思想是微分的思想,最为核心的思想是光波可以分解为次波源,由此可以提供一种光波传播的过程的解释,并且可以成功解释几何光学三大定律,值得一提的是,这也为后面惠更斯提出惠更斯-菲涅尔衍射积分公式打下了基础。
费马从光程的角度来解释光的传播,指出:光总是沿着光程平稳的方向传播,而平稳的含义从数学上讲表示为变分为0,这是思想几何光学的基石。



波动光学引论

作为电磁波的光

  • 光扰动是一种电磁扰动,光波是一种电磁波 380 n m − 760 n m , 1 0 14 H z 380nm-760nm,10^{14}Hz 380nm760nm1014Hz):光速测量与电磁波理论传播速度十分吻合,麦克斯韦猜想光是一种电磁波,其他证明略,基于麦克斯韦方程组推导可以推出波动方程,表明光在自由空间中由交变电磁场相互激发,具有波动的形式,传播速度受到空间介电常数和磁导率限制,这也是折射率深层的解释

E ( r , t ) = E 0 c o s ( ω t − k ∗ r + ϕ E ) H ( r , t ) = H 0 c o s ( ω t − k ∗ r + ϕ H ) ϕ H = ϕ E E(\bold r, t) = \bold E_0 cos(\omega t-\bold k* \bold r + \phi_E)\\ H(\bold r, t) = \bold H_0 cos(\omega t-\bold k* \bold r + \phi_H)\\ \phi_H=\phi_E E(r,t)=E0cos(ωtkr+ϕE)H(r,t)=H0cos(ωtkr+ϕH)ϕH=ϕE

  • 光是横波 E ∗ k = 0 \bold E* \bold k= 0 Ek=0并且 H ∗ k = 0 \bold H* \bold k= 0 Hk=0,波传播方向(波矢方向)与电磁场振动方向正交,所以电磁波是横波

  • 电场与磁场正交和同步:将平面波函数代入麦克斯韦方程组,得到 H ∗ E = 0 \bold H * \bold E = 0 HE=0 ϕ H = ϕ E \phi_H = \phi_E ϕH=ϕE,二者振幅也存在关系,说明二者步调一致,时时刻刻正交,振幅之间存在简单的比例关系

  • 光的表示:光波可以分为定态光波(周期很多)和脉冲光波,这里我们主要考虑定态光波。电场和磁场之间在相位、振幅、偏振方向上存在确定的关系;光频极高,介质磁化机构几乎冻结,电场主要与物质相互作用;我们考虑简谐波作为定态光波的基元成分;考虑定态光波的频率单一;最终使用复振幅的方式来处理光波。
    E ( P , t ) ,   H ( P , t ) → E ( P , t ) → E x ,   E y ,   E z → U ( P , t ) → A ( P ) e − i ( ω t − ϕ ( P ) ) → A ( P ) e i ϕ ( P ) \bold E(P, t),\ \bold H(P, t) \rightarrow \bold E(P, t) \rightarrow E_x,\ E_y,\ E_z \rightarrow U(P,t) \rightarrow A(P)e^{-i(\omega t-\phi(P))} \rightarrow A(P)e^{i\phi(P)} E(P,t), H(P,t)E(P,t)Ex, Ey, EzU(P,t)A(P)ei(ωtϕ(P))A(P)eiϕ(P)

  • 坡印廷矢量与光强:坡印廷矢量为电磁波的能流密度,表明单位面积上的瞬时能量强度,由于光频极高,所以我们使用平均能流密度作为光强(可观测),取某时间区间内的坡印廷矢量大小的平均值作为该时间区间内的光强。在相同介质内时,我们近似电场振幅平方为光强,在不同介质中时,则近似折射率和电场振幅平方的积作为光强,在用复振幅表示光波时,光强为复振幅与其复共轭之积
    S = E × H \bold S = \bold E × \bold H S=E×H

  • 球面波向平面波转化:傍轴条件/振幅条件和远场条件/相位条件。将 r r r 级数展开,傍轴条件下,振幅取0次项,相位保留到一次项,得到傍轴条件: z 2 > > x 2 + y 2 z^2 >> x^2+y^2 z2>>x2+y2;振幅和相位都保留到一次项,分析相位得到远场条件: z ∗ λ > > x 2 + y 2 z*\lambda>>x^2+y^2 zλ>>x2+y2。鉴于光波波长很短,即远场条件远大于傍轴条件,满足远场条件时,傍轴条件也自然满足。

光波干涉引论

  • 波叠加原理:波的叠加原理是波独立传播实验定律的理论描述,基于波的叠加原理建立线性波动理论(本文范畴);在超强光作用或某些非线性介质中,建立非线性波动光学。

U ( P , t ) = U 1 ( P , t ) + U 2 ( P , t ) 遵 从 波 的 叠 加 原 理 √ → 光 学 线 性 系 统 U ( P , t ) ≠ U 1 ( P , t ) + U 2 ( P , t ) 不 遵 从 波 的 叠 加 原 理 \bold U(P,t) = \bold U_1(P,t)+\bold U_2(P,t) \quad遵从波的叠加原理√ \rightarrow光学线性系统\\ \bold U(P,t) \neq \bold U_1(P,t)+\bold U_2(P,t)\quad 不遵从波的叠加原理 U(P,t)=U1(P,t)+U2(P,t)线U(P,t)=U1(P,t)+U2(P,t)

  • 光波相干条件:1. 存在振动方向一致的分量;2. 频率相同;3. 稳定的相位差(干涉场的稳定性,普通光源不满足)

I ( P ) = I 1 ( P ) + I 2 ( P ) 非 相 干 叠 加 I ( P ) = I 1 ( P ) + I 2 ( P ) + Δ I ( P ) 相 干 叠 加 I(P) = I_1(P)+I_2(P) \quad 非相干叠加\\ I(P) = I_1(P)+I_2(P)+\Delta I(P) \quad 相干叠加 I(P)=I1(P)+I2(P)I(P)=I1(P)+I2(P)+ΔI(P)

  • 光波相干的补充条件(追求观察干涉的合理性,从衬比度 γ = I M − I m I M + I m \gamma = \frac{I_M-I_m}{I_M+I_m} γ=IM+ImIMIm 角度出发):1. 两束光的振幅尽可能靠近;2. 传播方向夹角不要太大

  • 杨氏双孔实验 → \rightarrow 杨氏双缝实验

  • 两束平行光的干涉场

光波衍射引论

  • 初步认识衍射(在傅里叶光学简介中给出一系列对于衍射的认识):光波遇到障碍物,偏离几何光学的直线传播而绕行的现象
  • 惠更斯-菲涅尔原理:波前的每个面元可以看作次波源,它们向四周发射次波;波场中任意场点的扰动是左右次波波源所贡献的次级扰动的相干叠加。积分面为等相面。
IMG_0004 $$ \tilde U(P) = K \int\int f(\theta_0, \theta)·\tilde U_0(Q)·\frac{e^{ikr}}{r}dS \quad菲涅尔衍射积分公式 $$
  • 基尔霍夫衍射积分公式:基尔霍夫从亥姆霍兹定态波方程出发,利用格林公式,在 k r > > 1 kr>>1 kr>>1 r > > λ r>>\lambda r>>λ 的情况下导出了无源空间边值定解的表达式。积分面不一定为等相面,任意隔离点光源和场点的闭合曲面即可(即场点只能看到次波,看不到光源)。

U ~ ( P ) = − i λ ∫ ∫ 1 2 ( c o s θ 0 + c o s θ ) ⋅ U ~ 0 ( Q ) ⋅ e i k r r d S 基 尔 霍 夫 衍 射 积 分 公 式 \tilde U(P) = \frac{-i}{\lambda} \int\int \frac{1}{2}(cos \theta_0 + cos \theta)·\tilde U_0(Q)·\frac{e^{ikr}}{r}dS \quad基尔霍夫衍射积分公式 U~(P)=λi21(cosθ0+cosθ)U~0(Q)reikrdS

  • 基尔霍夫衍射积分公式的边界假设:从严格的电磁波角度来讲,它有不自洽和不严格之处,但光波的波长往往远小于光孔限度,所以在远处与实际偏差不大,在傍轴条件下,可以进一步简化基尔霍夫衍射积分公式。
IMG_0005 $$ \tilde U(P) = \frac{-i}{\lambda r_0} \int\int \tilde U_0(Q)·e^{ikr}dS \quad傍轴条件基尔霍夫衍射积分公式 $$
  • 衍射巴比涅原理:由衍射积分公式可得,两个透光率互补的衍射屏的复振幅之间与前场自由光场复振幅之间存在特定关系,需要注意的是,不要认为一衍射屏在某处衍射强度为亮,其互补屏在该处的衍射强度是暗的,这里用的是复振幅的关系。

U ~ a ( P ) + U ~ b ( P ) = U ~ 0 ( P ) 巴 比 涅 原 理 \tilde U_a(P)+\tilde U_b(P) = \tilde U_0(P) \quad巴比涅原理 U~a(P)+U~b(P)=U~0(P)

菲涅尔衍射

  • 以现代光学角度来讲,菲涅尔衍射和夫琅禾费衍射都属于远场衍射,区别主要在距离有限或者无限远。
  • 圆孔/圆屏菲涅尔衍射与关于泊松斑的小故事:圆孔和圆屏菲涅尔衍射都是一系列的同心圆,而圆屏衍射中心始终为亮斑。在菲涅尔提出次波相干叠加的说明光波衍射之后,数学家泊松立即计算得出圆屏衍射中心竟然会始终为亮斑,感觉不可思议,以此否定菲涅尔原理的正确性,在实验物理学家阿拉戈立即做了实验,确实发现了亮斑,使菲涅尔关于光波的概念和光波衍射原理得到承认和赞赏,这个圆屏衍射中心的始终存在的亮斑被后人称为泊松斑。
  • 半波带法:对于轴上点的菲涅尔衍射光强,以点光源到圆孔边界为半径做球,可以知道,只有突出圆孔的次波对该点的光强有贡献,使用半波带法对该位置进行划分,得到间隔为 λ 2 \frac{\lambda}{2} 2λ 的半波带,相邻半波带振幅近似相等,相位相差 π \pi π ,相互抵消。详细可以用衍射积分公式计算。
  • 菲涅尔波带片:菲涅尔波带片根据半波带法制作,将相邻的半波带依次挡掉,即可获得很强的中心衍射光强,现代新型波带片将无用的相邻半波带利用起来,同时去除了菲涅尔波带片的虚焦点的问题,提高了能量利用率。

夫琅禾费衍射

  • 矢量图解法分析光强分布:半径 R R R 随着衍射角 θ \theta θ 不同而变化,但是圆弧 A B AB AB始终不变,它等于所有微元等光程时的幅度, δ \delta δ 代表 A B AB AB 的相差。也可以用衍射积分公式计算。
IMG_0006 $$ A(\theta) = A_0\frac{sin(\delta /2)}{\delta /2} \\ \alpha = \delta/2=\frac{\pi a sin\theta}{\lambda}\\ I(\theta) = I_0(\frac{sin\alpha}{\alpha})^2 $$
  • 艾里斑与瑞利判据:艾里斑指的是圆孔夫琅禾费衍射的中心亮斑,艾里斑的半角宽度为 Δ θ 0 ≈ 1.22 λ D \Delta \theta_0 \approx 1.22\frac{\lambda}{D} Δθ01.22Dλ,艾里斑让我们知道,即使忽略成像仪器的几何像差,仍然无法实现理想成像,这给出了成像仪器的分辨本领极限(衍射极限),给为提高成像仪器的分辨本领提出了指导意见(波长 λ \lambda λ 或者口径/孔径 D D D现在知道为什么望远镜口径越做越大了吧!)。瑞利判据描述的是,当两个艾里斑中心角间隔与艾里斑的半角宽度之间的关系。

δ θ > Δ θ 0 可 分 辨 δ θ < Δ θ 0 不 可 分 辨 δ θ = Δ θ 0 刚 好 可 分 辨 \delta \theta> \Delta \theta_0 \quad 可分辨\\ \delta \theta< \Delta \theta_0 \quad 不可分辨\\ \delta \theta= \Delta \theta_0 \quad 刚好可分辨 δθ>Δθ0δθ<Δθ0δθ=Δθ0

偏振光引论

  • 偏振态/偏振面:由波矢 k \bold k k E \bold E E 振动方向组成的面
  • 偏振片
  • 偏振与干涉

本章小结

波动光学的出发点是麦克斯韦方程组,在知道光是一种电磁波之后,麦克斯韦方程组揭示了光的波动性,即光可以使用电磁波动方程来描述,在做出一些列简化之后,我们使用复振幅的方式来表示光,此时的光告别了light ray,称为light field。
菲涅尔在惠更斯原理的基础上,成功使用次波源和球面波的思想解释了光波的传播过程,



介质界面光学

菲涅尔公式

  • 提要:光波带有振幅、相位、频率、传播方向、偏振结构等诸多属性,前面所有的分析都没有给出,在界面处的光波这些属性的变化情况。因此本章利用麦克斯韦方程组提供的边值关系,给出传播方向、能流分配、相位变更、偏振态变化等几个方面的内容。
  • 内容:考虑绝缘介质分界面,即无自由电荷、无传导电流,有麦克斯韦方程组可得,边界处:电位移矢量法线分量连续(无自由电荷)、电场强度矢量切向分量连续、磁感应强度矢量法线分量连续、磁场强度矢量切线分量连续(无传导电流)。
IMG_0007
  • 适用条件:1. 绝缘介质(相对于导电介质);2. 各向同性介质(相对于各向异性介质);3. 弱场或线性介质(相对于强场或非线性介质);3. 适用于光频段(高频 1 0 14 H z 10^{14}Hz 1014Hz),介质磁化机制几乎冻结

反射率与折射率

  • 从菲涅尔公式到反射率与折射率:
IMG_0008
  • 布儒斯特角:反射的 p p p 光为0,即反射光中只有 s s s光,此时的入射角。可以做起偏器
  • 全反射角/临界角:只有反射光,没有透射光/折射光,此时的入射角
  • 斯托克斯倒逆关系:已知介质1到介质2的透射率和反射率,使用可逆光路巧妙地推导从介质2到介质1的透射率和反射率。

r ′ = − r t t ′ + r 2 = 1 r'=-r \\ tt'+ r^{2} = 1 r=rtt+r2=1

反射光的相位

  • 相位变化关系:由反射率和透射率公式+仔细处理局部坐标系和全局坐标系来求解。

  • 半波损失:1. 正入射时, n 1 < n 2 n_1<n_2 n1<n2 时,界面反射相位突变 π \pi π,有半波损失; n 1 > n 2 n_1>n_2 n1>n2 时,界面反射无相位突变,没有半波损失。2. 掠入射时,均有半波损失。3. n 1 > n 2 < n 3 n_1>n_2<n_3 n1>n2<n3 或者 n 1 < n 2 > n 3 n_1<n_2>n_3 n1<n2>n3时,有相位突变 π \pi π n 1 > n 2 > n 3 n_1>n_2>n_3 n1>n2>n3 或者 n 1 < n 2 < n 3 n_1<n_2<n_3 n1<n2<n3时,没有相位突变 π \pi π

反射光的偏振态

  • 几点结论:1. 正入射时,入射为右旋偏振光,反射为左旋偏振光。2. 入射角为布儒斯特角时,反射光为线偏振 s s s 光。

全反射中的隐失波

  • 隐失波:当入射角大于临界角时,出现全反射的情况,此时透射光场是否为零?显然不是,否则不满足电磁场的边值关系。经过推导得到隐失波函数,其中在 z z z 方向失去空间周期性,呈振幅指数衰减,失去波动性,并且在 x x x 方向具有行波的时空周期性。
  • 应用:利用隐失波的光学隧道效应(大概意思:隐失波跑出来了),可以制成近场扫描显微镜,分辨率在 10 − 50 n m 10-50nm 1050nm


干涉装置与光场时空相干性

常见干涉装置

  • 常见干涉装置:1. 分为分振幅干涉和分波前干涉;2. 在分波前干涉图样中,条纹不是等亮度的,受到了衍射效应的限制,可以说,分波前干涉场实际上时两个波前衍射场的干涉,其中每一个衍射场类似于菲涅尔衍射,亮纹的不等亮度正是这些衍射因子的调制导致的;3. 在分析分振幅干涉时,要注意在反射时是否出现半波损失。
IMG_0009

光场的时空相干性

  • 提要:我们使用衬比度表征两束光的相干程度,即在后面分析时空相干性时,是以衬比度为标准的;并且光场的时空相干性实际上来源与我们对实际光源的考虑(光源宽度、频率成分等),这是我们在先前没有考虑的。

γ = 1 完 全 相 干 0 < γ < 1 部 分 相 干 γ = 0 完 全 不 相 干 \gamma=1 \quad 完全相干\\ 0<\gamma < 1 \quad 部分相干\\ \gamma = 0 \quad 完全不相干 γ=10<γ<1γ=0

  • 光场的空间相干性:1. 两光扰动之间的相干程度与空间有关。2. 对于扩展线光源照射双孔的双缝实验,干涉图样衬比度为 s i n c sinc sinc 函数的形式: γ = ∣ s i n u u ∣ , u = π d R λ b \gamma = |\frac{sinu}{u}|, u = \pi \frac{d}{R\lambda}b γ=usinu,u=πRλdb,d为双孔间距,R为线光源到双孔距离,b为线光源长度。傍轴条件下,近似 Δ θ 0 ≈ d 0 / R \Delta\theta_0 \approx d_0/R Δθ0d0/R 为相干孔径角(衬比度为0时的极限孔径角),表示双孔对光源中心所张开的孔径角。3. 可以看到,线光源的长度和相干孔径角之间存在反比关系,由光波长约束。

b ⋅ Δ θ 0 ≈ λ 空 间 相 干 性 反 比 公 式 b·\Delta \theta_0 \approx\lambda \quad 空间相干性反比公式 bΔθ0λ

  • 光场的时间相干性:1. 两光扰动之间的相干程度与时间有关。2. 定性来看,考虑到实际光源的谱线宽度,不同波长的光各有一套自己的干涉条纹,彼此错位,非相干叠加之后,导致干涉场的衬比度下降: γ ( Δ L ) \gamma(\Delta L) γ(ΔL),这里的衬比度相较于之前的衬比度不同,它是一个局部衬比度的概念,在同一干涉场中有不同的衬比度值,随着光程差变化而变化。3. 从微观上看持续发光的时间为 τ 0 \tau_0 τ0 量级,空间展开的波列长度以光程的形式表达 L 0 = c ⋅ τ 0 L_0=c·\tau_0 L0=cτ0,由此,在光场中两点光扰动处,该波列长度和两列波之间光程差之间的数量关系能够表示二者的相干程度,从而我们定义 τ 0 \tau_0 τ0 为相干时间, L 0 L_0 L0 为相干长度,这类相干性称为时间相干性。 4. 举例:普通气体光源,相干时间 1 0 − 9   o r   1 0 − 8 s 10^{-9} \ or \ 10^{-8}s 109 or 108s,相应相干长度为 30 c m   o r   300 c m 30cm \ or\ 300 cm 30cm or 300cm,对于激光来说,相干时间更大,相干长度更长。5. 综合2. 3. 来看,由如下解论,准单色光源的谱线宽度决定了最大光程差(衬比度为0时的光程差),同时,最大光程差受限于波列长度,通过证明可以得到这两个最大光程差是相同的,因此得到时间相干性反比公式,表明,相干长度和谱线宽度之间收到反比约束,相干长度越长,单色性越好。

Δ L > L 0 ,   τ > τ 0 非 相 干 Δ L < L 0 ,   τ < τ 0 部 分 相 干 Δ L ≈ 0 ,   τ ≈ 0 几 乎 完 全 相 干 \Delta L>L_0, \ \tau>\tau_0 \quad 非相干 \\ \Delta L<L_0, \ \tau<\tau_0 \quad 部分相干 \\ \Delta L \approx0, \ \tau\approx0 \quad 几乎完全相干 ΔL>L0, τ>τ0ΔL<L0, τ<τ0ΔL0, τ0

L 0 ⋅ Δ λ λ ≈ λ 时 间 相 干 性 反 比 公 式 L_0 · \frac{\Delta \lambda}{\lambda} \approx \lambda \quad 时间相干性反比公式 L0λΔλλ

  • 小结:光场的时空相干性,根源于光源的发光断续性及其相联系的相位随机性,是针对光场中的相位随机波而言的。一般而言,二者是并存的,实际光源总是非单色的扩展光源,只不过不同条件下,突出的表现不同。

激光

  • 多光束干涉
  • 法布里-珀罗干涉仪(分辨超精细光谱):
  • 激光器(受激幅射光放大器LASER):光放大(激活介质)+选择性(谐振腔)
  • 激光束的特性:1. 高定向和高亮度;2. 高度单色性;3. 高度空间相干性


多元多维衍射结构

  • 前情提要:1. 惠更斯-菲涅尔原理,巴比涅原理,菲涅尔-基尔霍夫衍射角积分公式,菲涅尔衍射+半波带法,菲涅尔波带片,+单缝夫琅禾费衍射+矢量图解法,艾里斑与成像仪器分辨本领。2. 值得注意的一点是,衍射反比律:中央明条纹的宽度正比于波长,反比于缝宽,告诉我们,大的衍射图样揭示了衍射物的微观结构,能够作为成像、探测物质结构的有利工具。3. 本章讨论多元结构/多维结构的夫琅禾费衍射。

位移-相移定理

  • 内容:在一个夫琅禾费衍射系统中,图像的位移时,其夫琅禾费衍射场将相应一个相移,二者存在定量关系。

光 源 ( x 0 ,   y 0 ) → 夫 琅 禾 费 衍 射 场 ( δ 1 ,   δ 2 ) 位 移 − 相 移 定 理 δ 1 = − k x 0 s i n θ 1 δ 2 = − k y 0 s i n θ 2 光源(x_0, \ y_0) \rightarrow 夫琅禾费衍射场(\delta_1,\ \delta_2) \quad 位移-相移定理\\ \delta_1 = -kx_0sin\theta_1\\ \delta_2 = -ky_0sin\theta_2 (x0, y0)(δ1, δ2)δ1=kx0sinθ1δ2=ky0sinθ2

  • 证明:从点源位移入手,通过计算光程差 $ \Delta L=x_0sin\theta$,得到相移;再而推广到图像位移,可证。
  • 说明:1. 仅适用于夫琅禾费衍射场,只有对于夫琅禾费衍射场来说,相移与位移量之间才是简单的线性关系,对于菲涅尔衍射来说,二者之间是非常复杂的非线性关系。2. 在证明该定理过程中,隐含了“系统的空间不变性”,即图像位移之后,在某方向上法设的次波线与原先该方向的次波线一样,也能进入透镜对后焦面贡献次波,在透镜孔径有限的实际条件下,对于大角衍射是无法实现了,但对于傍轴小角衍射,只要透镜孔径足够大,系统的空间不变性是基本成立的。

一维光栅

  • 内涵:一维光栅是一种一维有序周期性排列的衍射屏。
  • 夫琅禾费衍射场:使用相干光照射的条件下,对于其夫琅禾费衍射场,我们可以直接使用位移-相移定理,经过相干叠加之后得到最终的衍射场,可以将衍射场分割成单元因子和结构因子,单元因子取决于单元的形貌,结构因子由各单元之间的空间分布决定,表征各个单元之间的干涉。

U ~ ( θ 1 ,   θ 2 ) = u ~ 0 ( θ 1 ,   θ 2 ) ⋅ S ~ ( θ 1 ,   θ 2 ) 一 维 光 栅 夫 琅 禾 费 衍 射 波 前 分 布 S ~ ( θ 1 ,   θ 2 ) = Σ e i ( δ 1 j + δ 2 j ) \tilde U(\theta_1,\ \theta_2)=\tilde u_0(\theta_1, \ \theta_2)·\tilde S(\theta_1, \ \theta_2) \quad 一维光栅夫琅禾费衍射波前分布\\ \tilde S(\theta_1, \ \theta_2) = \Sigma e^{i(\delta_{1j+\delta_{2j}})} U~(θ1, θ2)=u~0(θ1, θ2)S~(θ1, θ2)S~(θ1, θ2)=Σei(δ1j+δ2j)

  • 一维多缝光栅:1. 其中 a a a 为单缝宽度, d d d 为光栅的空间周期, N N N 为单缝条数, k k k 代表第 k k k 级主峰, i 0 i_0 i0 为单缝衍射的零级中心的衍射光强。2. 多缝干涉收到单缝衍射的调制,可能会导致缺级的出现。值得注意的是,虽然不同的一维光栅有着不同的单元因子,但是具有相同的结构因子。

I ( θ ) = i 0 ( s i n α α ) 2 ⋅ ( s i n N β s i n β ) 2 α = π a s i n θ λ β = π d s i n θ λ I(\theta)=i_0(\frac{sin\alpha}{\alpha})^{2}·(\frac{sinN\beta}{sin\beta})^{2}\\ \alpha = \frac{\pi a sin\theta}{\lambda}\quad \beta= \frac{\pi d sin\theta}{\lambda} I(θ)=i0(αsinα)2(sinβsinNβ)2α=λπasinθβ=λπdsinθ

d s i n θ k = k λ 光 栅 公 式 Δ θ k = λ N d c o s θ k 主 峰 半 角 宽 度 公 式 d sin\theta_k = k\lambda \quad 光栅公式\\ \Delta \theta_k=\frac{\lambda}{Ndcos\theta_k} \quad 主峰半角宽度公式 dsinθk=kλΔθk=Ndcosθkλ

  • 光栅光谱仪:1. 一维光栅的重要应用之一便是制作光栅光谱仪,分析光谱和测定光谱曲线,其依据的原理来自于光栅公式,不同波长的同级主极强出现在不同的方位角,进而形成光谱。2. 但是,前面提到的一维多缝光栅不适合制作光栅光谱仪,有以下两个缺点:不同波长的零级主极大是重合的,但是占据了大量的能量,即所谓的“零级无色散”,是对光能量的浪费。其次,透射式光栅出现的是多序光谱,实际上,我们只需要一序光谱即可完成任务,是对光能量的浪费。3. 实际上使用的是反射式的闪耀光栅作为光栅光谱仪。4. 在光谱仪中,光路转换元件通常是反射镜而不是透镜,这是因为反射无色散,且可以缩短整机长度,扩大可测量范围,从紫外到红外。
  • 闪耀光栅:1. 垂直于光栅宏观平面入射, Δ L = d s i n 2 θ b \Delta L=dsin2\theta_b ΔL=dsin2θb;2. 垂直于槽面平面入射, Δ L = d s i n θ b \Delta L=dsin\theta_b ΔL=dsinθb;3. 总结:使用巧妙的方法,使得衍射零级的地方(反射)为干涉的非零级 ,即大部分能量落到某一干涉级内,在该级内可以做光谱分析;其次,由于闪耀光栅的单槽宽度实际上非常和光栅周期接近,这里画成这样只是为了方便解释光栅结构而已,所以有 a ≈ d a \approx d ad,推导可得其他级的干涉主极强刚好落到单元衍射的零点处,从而全部消失(消级)。4. 我们在做光谱分析时,一般选用一级干涉的地方,零级无色散,高级可能会导致错位的问题,所以闪耀光栅存在闪耀波长:一级闪耀波长,二级闪耀波长,闪耀波长有闪耀角 θ b \theta_b θb 决定,并且我们在做光谱分析时,需要使得闪耀波长位于待测波段中部。
IMG_0010

二维光栅

  • 二维光栅的正入射:正入射共勉入射时的解决方案与一维光栅的解决方案无遗,即使用位移-相移定理即可。
  • 二维晶片的共面入射:1. 二维晶片的共面衍射,将每个原子看成一个散射源,散射源向四周发射相同频率的电磁波,并且这些电磁波时相干的,分为排内干涉和排间干涉,当同时满足主极大的条件时,得到真正的主极大。2. 观察和分析衍射图样可知,零级主极强在 θ = 0 \theta=0 θ=0 的地方,不包含任何物质结构信息,在任何条件下存在,其他主极强的相对强度决定于单元散射因子,不得而知(与单个原子内部结构相关),其他主极强提供关于结构因子的信息,也就是物质周期性结构的信息。3. 凡是周期性结构的衍射都具有方向选择性的功能,对主极强的方向要求变得苛刻,这一点在三维晶体衍射中表现得更加突出。
Image 2021-12-01 22-57-28

三维光栅

  • 布拉格条件:1. 晶体的晶格常数在埃米量级,要获得效果不错的衍射图样,我们使用X/伦琴射线作为入射光。2. 将三维晶体当作二维晶面的集合,将二维晶面看作一维晶线的集合,将一维晶线看作零维格点的集合,由此,反过来逐步确定衍射主极强的位置。3. 布拉格条件看似和一维光栅公式差不多,但有两点值得注意,其一,布拉格条件中的 d d d θ \theta θ 时成对出现的;其二,对于入射晶体的X射线,要求单色和方向确定,可能难以解出整数解 k k k,为了获得丰富的衍射图样,必须寻求高明的实验方法,如下劳厄相和德拜相。
image-20211201231340765
  • 劳厄相和德拜相

多 色 连 续 谱 X 射 线 → 单 晶 体 → 衍 射 图 样 → 劳 厄 斑 单 色 X 射 线 → 多 晶 粉 末 → 衍 射 图 样 → 德 拜 环 多色连续谱X射线 \rightarrow 单晶体 \rightarrow 衍射图样 \rightarrow 劳厄斑\\ 单色X射线 \rightarrow 多晶粉末 \rightarrow 衍射图样 \rightarrow 德拜环 X线X线



傅里叶变换光学简介

  • 简要:现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其是夫琅禾费衍射息息相关。

衍射系统与波前变换

  • 衍射系统:从 U ~ 1 → U ~ 2 \tilde U_1 \rightarrow \tilde U_2 U~1U~2 是衍射屏的作用; U ~ 2 → U ~ \tilde U_2 \rightarrow \tilde U U~2U~ 是波的传播行为,由惠更斯-菲涅尔-基尔霍夫理论(HFK理论)给出。
Image 2021-12-01 22-58-08 $$ \tilde U(x',\ y') = \frac{-i}{\lambda r_0}\int\int \tilde U_2(x, \ y)e^{ikr} dx \ dy\quad 傍轴条件下的近似衍射积分公式 $$
  • 衍射屏函数:在线性光学系统中,屏函数描述成复振幅的形式,因此可以将其分类为,振幅型(孔型衍射屏)、相位型(闪耀光栅、透镜、棱镜)、相幅型(普遍)。

t ~ ( x ,   y ) ≡ U ~ 2 ( x ,   y ) U ~ 1 ( x ,   y ) = t ( x ,   y ) ⋅ e i ϕ ( x ,   y ) \tilde t(x, \ y) \equiv \frac{\tilde U_2(x, \ y)}{\tilde U_1(x,\ y)}=t(x,\ y)·e^{i \phi(x,\ y)} t~(x, y)U~1(x, y)U~2(x, y)=t(x, y)eiϕ(x, y)

  • 衍射的内涵:到目前为止,我们至少可以给出三种衍射的内涵:1. 最开始的衍射也称为绕射,描述为,当光在传播过程中遇到障碍物时,将发送偏离直线传播或者偏离几何光学的传播行为;2. 把惠更斯-菲涅尔原理运用到衍射现象中时,我们可以意识到,衍射发生在,当光波在传播过程中其波面受到某种限制时。3. 现在可以这样表述,由于某种原因,波前的复振幅分布(相位/振幅)发生改变,后场的传播不再是自由传播时的光波场,这便是衍射。三种理解方法是逐步的、递进的对光波衍射的更加普遍的认识。现在:图像胶片发生衍射、浮雕透明胶片在光场中发生衍射也就不足为奇了。

相位衍射元件(透镜、棱镜为例)

  • 透镜:在光学系统中,在忽略吸收的情况下(或者线性吸收/固定吸收?),透镜有两个作用,一方面,它是一个光瞳,起限制波前的作用,仅允许入射光波中央那部分波前进入光学系统;另一方面它起变换波前的作用,按照以往的经典光学,分别用有限孔径引起的光波衍射和透镜本身的几何成像及像差来描述以上两种作用,但是从波前光学的观点出发,可以用一个复振幅透过率函数/屏函数来同一地给出反映。值得注意的是,如果是平行光入射, F F F 与透镜焦距相等。下式没引入窗函数的作用。
image-20211201231410740 $$ \tilde t_L(x,\ y) = e^{-ik\frac{x^2+y^2}{2F}}\quad F = \frac{1}{(n-1)(\frac{1}{r_1}-\frac{1}{r_2})}\quad 透镜二次相因子变换函数(傍轴+薄透镜)\\ $$
  • 棱镜:在光学系统中,棱镜的基本功能是改变光束的传播方向,即棱镜是一个光偏转元件。这里没引入窗函数的作用。

t ~ P ( x ,   y ) = e − i k ( n − 1 ) α x 特 殊 方 位 t ~ P ( x ,   y ) = e − i k ( n − 1 ) ( α 1 x + α 2 y ) 一 般 方 位 \tilde t_P(x,\ y) = e^{-ik(n-1)\alpha x}\quad 特殊方位\\ \tilde t_P(x,\ y) = e^{-ik(n-1)(\alpha_1 x+\alpha_2 y )} \quad一般方位 t~P(x, y)=eik(n1)αxt~P(x, y)=eik(n1)(α1x+α2y)

夫琅禾费衍射与傅里叶变换

  • 余弦光栅

  • 屏函数的傅里叶展开:对于周期性的光栅屏函数,在满足迪利克雷条件的情况下,在数学上可以通过傅里叶级数展开,一般来说有三种写法,三种写法本质相同,但是可以帮助我们产生不同的理解:1. 余弦正弦式;2. 余弦相移式;3. 指数式。在余弦相移式中,每个分量相当于一个余弦光栅,而指数式中的频率的阶数正负代表一系列平面波向上或者向上倾斜。

  • 两点关于傅里叶展开的说明:1. 傅里叶系数表明屏函数中各个空间频率成分所占的分量,称为频谱,对于周期屏函数,频谱为离散谱;对于非周期屏函数,频谱为连续谱。2. 通信电子学领域,研究一维时间信号;光学研究空域的结构信息,通常式二维的屏函数。

  • 傅里叶光学的基本思想:1. 在光学上,一个复杂图像可以被分解为一系列单频信息的合成,即一个复杂图像可以看出一系列不同频率、不同取向的余弦光栅之和。观察夫琅禾费衍射可知,单色光入射的二维图像,夫琅禾费衍射使得一定空间频率的光学信息由一对特定方向的平面衍射波传输开;在远处平面衍射波之间彼此分离,常用的远场分频装置是透镜,不同方向的平面衍射波汇聚在后焦面上,形成一个个衍射斑,将输入图像的傅里叶频谱直观地显示出来。2. 这为空间滤波开辟了可行的技术途径。

image-20211201231441431

阿贝成像原理与空间滤波

  • 阿贝成像原理:现代变换光学可以追溯到一百多年前的阿贝成像原理,阿贝提出一种新的成像观点(从频谱的角度),物是一系列不同空间频率信息的集合,相干成像分为两个部分完成,第一部分(分频),入射光经过物平面发生夫琅禾费衍射,在透镜后焦面上出现一系列谱斑;第二部分(合成),这些谱板作为新的次波源发出球面波,最终在像平面上相干叠加。
image-20211201231502368
  • 空间滤波:物信息的空间频谱展现在透镜的后焦面/频谱面,我们通过在频谱面安置不同结构的光阑,以提取或者舍弃某些频谱,再通过合成图像就完成了改造图像的信息处理,这样的光阑称为空间滤波器/光学滤波器,分类同样有振幅型、相位型、相幅型。
Image 2021-12-01 22-59-44
  • 光学信息例举:1. 4F图像处理系统,4F系统是一个像重现物,且倒置的系统,其中两透镜焦距相等不是必要的,焦距不等只会带来图像的缩放,相应地引起图像空间频率的增大或者减小,不影响图像的基本特征;2. 图像加减;3. 图像k

光全息术

基本原理与分类

  • 全息术:能够再现实际景物的真实三维形貌,是一种无透镜两步成像技术,首先使用光波干涉实现对物光波前的全息记录,然后通过光波衍射实现物光波的再现。

  • 共轴全息、离轴全息、体全息:1. 共轴全息物体的照射光和干涉参考光是同一束光,得到的共轴全息图之后通过衍射参考光照射后出现的三列波难以观测;2. 离轴全息使得照射光和干涉参考光不共轴,在衍射恢复时能够得到相对较好的观测结果。3. 体全息源于对多色光的全息记录与恢复的需求,要想获得不错的观测结果,薄全息只能使用单色光,否则会出现各色光不同衍射波位置混叠,无法重现物光波,体全息使用三维的全息记录元件,经过干涉全息记录之后,得到的全息图宛如三维晶体。

Image 2021-12-02 14-59-38

纯相位SLM调制算法

  • 提要(CGH):计算全息建立在数字计算与现代光学的基础上,它通过计算机编码的方式生成全息图。在计算机生成全息显示场景中,给定任意二维或三维图像,首先利用计算机生成全息图算法在全息图平面生成一幅全息图,再利用空间光调制器加载这幅全息图,之后通过激光照射,在全息图上发生衍射形成衍射图案,便可以在重建图像平面对原始图像进行光学重建。

迭代算法

  • G-S算法(Gerchberg–Saxton, 基于ER算法):在SLM平面内和平面内施加限制条件(两个强度条件),通过在两个平面不断来回迭代并且强制施行这两个限制条件,希望,经过足够多次的迭代之后能够得到同时满足这两个限制条件,并且得到效果不错的重建图像。http://www.u.arizona.edu/~ppoon/GerchbergandSaxton1972.pdf
5083046cf23febd36a3c1c97f36ae72a_720w
  • 误差扩散算法(Error Diffusion):迭代算法,该算法会在全息图平面的各个像素之间迭代。当复振幅全息图的振幅信息被直接移除时,每个像素点都会产生误差,而误差扩散算法将逐个扫描像素点,并将每个像素点的误差按照一定权重向尚未扫描到的四个相邻像素点扩散。图3展示了单向误差扩散算法。在单向误差扩散的基础之上,双向误差扩散算法的奇数行与偶数行的扫描方向是相反的,这种双向扫描方
  • 式会抵消部分由单向扫描所带来的相关性误差,进而取得更高的重建准确度。
  • Wirtinger算法:维尔丁格流(Wirtinger Flow)的相位提取方法可以将相位提取问题转化为可用一阶优化算法(First-Order Optimization Method)进行优化的二次问题(Quadratic Problem)。运用该相位提取方法进行全息图优化可以使重建质量达到极高的准确度,而计算成本则仅与GS算法相当。10.1109/TIT.2015.2399924
  • CITL算法:上次的汇报内容Computational Imaging Neural Holography | SIGGRAPH 2020

非迭代算法

  • 双相幅编码(DPAC)算法
  • HoloNet模型
  • 随机相位方法:在复振幅全息图纯相位化的过程中,随机相位方法是一种常用的非迭代方法。由于纯相位全息编码相当于高频滤波过程,重建图像只包括原始图像的边界与线条部分,因此需要引入随机相位掩膜(Random Phase Mask)使原始图像的波前分散至整幅全息图以提高重建质量,然而随之而来的斑点噪声也较明显。为了减少这种斑点噪声,近期有一种改进的随机相位方法,该方法会针对不同的图像,引入具有不同频率的随机相位掩膜以进一步减少信息损失和提高重建质量。
  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值