动手点关注 干货不迷路 👆
从视频会议到远程医疗,从连麦开黑到陪伴社交,疫情常态化加速了线下活动线上化,逐渐改变了人们的生产生活方式。其中,音频质量很大程度上影响着通话体验,而噪声又很大程度决定音频质量。比如,居家办公场景,就流传着“居家办公,必有邻居装修”的定律。也是因为装修声会很大程度影响参与效率,所以对居家办公的同学带来了很大的影响。火山引擎 RTC,集成了自研的深度学习降噪方案,来应对游戏、互娱、会议等实时音视频沟通场景下的噪声影响。
让我们看一下 RTC AI 降噪在会议、游戏、居家场景下的降噪效果对比。
会议场景
游戏场景
居家场景
通过上面的对比效果可以明显看到不同噪声对线上生产、生活场景的影响,以及通过 AI 降噪达到的降噪效果。RTC AI 音频降噪采用了经典的CRN网络结构【参考文献 1】作为降噪框架。CRN 网络结构由 Encoder、Recurrent Layer 和 Decoder 三部分组成。这种结构兼具了 CNN 的深层特征抽取能力和递归网络的记忆能力,表现出了比纯 CNN 网络或者纯 GRU 网络更好的降噪能力。
CRN网络结构
在具体落地到产品的过程中,我们在上述基础模型中,解决了实际场景中出现的五大问题:
如何应对各种复杂的设备,多样的环境
如何在满足低延时条件下,提升模型效果
如何在满足低计算量条件下,提升模型效果
如何平衡强降噪和高保真
如何应对对音乐的损伤
通过解决上述问题,可以有效提升算法的速度、实时性和稳定性,保证在语音无损伤的情况下最大程度地实现噪声抑制,提升实时音视频场景,特别是会议、音乐等复杂场景下的互动体验。下面具体展开讲下我们是分别如何解决上述五大问题的。
一、训练数据增广
在我们实际生活中,降噪算法所需要面临的场景是非常复杂多样的。
拿“会议”场景举例,开会环境的多样性给降噪算法带来了不少挑战:在座位上开会,设备会采集到邻座工位上的说话声,此时我们期望算法能去除一定的背景说话人声;在会议室中开会,由于说话人离麦克风的距离各不相同,此时降噪算法面临着多人声、远距离拾音、混响的难题;如果是在公交、地铁、高铁上开会,除了人声,还会引入车辆信号、报站等声音。还有比如在室内玩游戏使用游戏语音的例子,此时,场景中的噪声除了环境噪声,还有敲击屏幕或键盘、拍桌子等各类噪声,此时就需要降噪算法能够尽量抑制足够多类别的噪声。
不仅如此,在不同环境下常用的设备也是不尽相同的。常用设备主要可以归类为以下几类:
除了使用场所有所差别,另外一个主要差异点在于不同设备的采集特性不同,并且自带了不同的音频前处理算法,以现在主流的安卓手机为例,往往出厂就自带了强抑制降噪算法,但在实际体验中仍然存在噪声较多以及人声损伤问题,那么就需要我们的降噪算法去适配这一类“二手”音频数据,包