CVPR 2024 | CAMixerSR 动态注意力分配的超分辨率加速框架

本文介绍了一种名为CAMixerSR的超分辨率框架,通过内容感知和计算资源的有效分配,降低在超高分辨率场景中的算力消耗,实现在保持性能的同时显著减少FLOPS。实验结果显示,相比于传统方法,CAMixerSR在PSNR和效率上有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

随着相关技术和应用的发展,比如超高清屏幕、虚拟现实(VR)等沉浸式体验的增加,用户对超高分辨率图像和视频的需求变得越来越强烈。在这些场景中,图像的质量和清晰度对于提供最佳的用户体验至关重要。超高分辨率不仅能提供更清晰、更真实的视觉效果,还能在一定程度上增强人们的互动和沉浸感,在一些VR场景中我们需要8K甚至16K的才可以满足需求。然而要生成或者处理这些超高分辨率的内容,对算力的要求也是与日增长,对相关算法提出了挑战。

超分辨率是一个经典的计算机底层视觉问题,该问题要解决的是通过低分辨率的图像输入,获得高分辨率的图像输出。目前该领域的算法模型主要是有CNN以及Transformer两大类别,考虑到实际的应用场景,超分的一个细分领域方向是算法的轻量化。在上述提到的超高分辨率的场景,超分算法的算力消耗问题变得尤为关键。基于此,本文提出了一种名为CAMixerSR的超分框架,可以做到内容感知,通过对Conv和Self-Attention的分配做到计算量的大幅优化。

cc20e1c95f3a5a1640678039694da9e4.jpeg

论文地址:http://arxiv.org/abs/2402.19289

方法

b3af023b408f355f7748df17d9b23544.jpeg
Table 1 不同难易程度内容的超分算力与效果对比
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值