摘要
火山引擎智能拥塞控制算法 VICC(Volcano Intelligent Congestion Control)是一种自适应的拥塞控制算法,旨在解决全球不同网络环境下,不同音视频应用对带宽利用率和延时的差异化要求。它结合了传统拥塞控制算法(如 GCC 和 BBR)的优点,并且能够根据不同的网络条件、业务偏好和码率特征进行自适应调整,包括自适应拥塞响应速度、自适应带宽探测幅度、自适应丢包检测策略、自适应抗抖动能力和自适应 Padding。通过这些自适应调整,VICC 算法能够提升各种复杂弱网下的带宽利用率,同时在满足不同延时的条件下,尽量提升带宽的稳定性,为用户提供更好的音视频体验。
1. 行业现状和挑战
实时音视频应用的网络传输面临诸多方面的挑战,其中包括:
带宽利用率:为了提供高质量的音视频体验,需要充分利用网络带宽,这就要求网络传输算法具有高效的带宽探测能力。
延迟和响应时间:实时音视频应用要求快速的响应时间和超低延迟,这就要求网络传输技术具有快速的传输速度和低延迟的特性。
可靠性和稳定性:网络传输过程中可能会出现拥塞、丢包等问题,这会影响到音视频的质量和稳定性,因此要求网络传输技术具有可靠性和稳定性,能够保证数据的正确传输和恢复。
公平性和资源分配:在多用户场景下,需要保证网络传输的公平性和资源分配的合理性,以避免某些用户获得过多的资源,导致其他用户的服务质量下降。
除了上述挑战,实时音视频传输还需要关注体验指标,如实时性、流畅性、清晰度、音画同步性等,这些指标对于提供高质量的音视频体验至关重要。
1.1 现网音视频卡顿归因
为了快速提升线上用户弱网相关的体验,火山引擎根据抖音集团真实用户的负反馈数据打磨研发了“音视频卡顿归因模型”,它可以对线上音视频卡顿的所有 case 进行自动归因和聚类,为弱网问题的优化和优先级给出有效指导。
根据模型对线上用户音视频卡顿反馈的归因和聚类,我们发现,当前引起线上卡顿问题的主要原因是上下行大小缓存问题。
线上用户视频/音频卡顿归因类型占比
大小缓存的描述,可以参考:https://www.ietf.org/archive/id/draft-cardwell-iccrg-bbr-congestion-control-00.txt
大缓存:Deep buffers,at bottleneck links with deep buffers, congestion happens before packet loss.
小缓存:shallow buffers, in shallow buffers, packet loss happens before congestion.