Python实现感知器分类

85 篇文章 7 订阅 ¥59.90 ¥99.00
本文介绍了Python实现感知器分类算法,详细讲解了算法基本思想、关键步骤,并提供了源代码示例。通过迭代更新权重,感知器可以学习线性分类器,用于二分类问题的预测。
摘要由CSDN通过智能技术生成

Python实现感知器分类

感知器是一种经典的二分类算法,它可以根据给定的训练数据学习一个线性分类模型。在本文中,我们将使用Python来实现感知器分类算法,并给出相应的源代码。

感知器分类算法的基本思想是通过迭代的方式调整模型的参数,使得模型在训练数据上能够达到较好的分类效果。感知器算法的关键步骤包括权重初始化、计算预测值、更新权重等。

下面是感知器分类算法的Python实现代码:

import numpy as np

class Perceptron:
    def __init__(self, learning_rate=0.01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值