Python实现感知器分类
感知器是一种经典的二分类算法,它可以根据给定的训练数据学习一个线性分类模型。在本文中,我们将使用Python来实现感知器分类算法,并给出相应的源代码。
感知器分类算法的基本思想是通过迭代的方式调整模型的参数,使得模型在训练数据上能够达到较好的分类效果。感知器算法的关键步骤包括权重初始化、计算预测值、更新权重等。
下面是感知器分类算法的Python实现代码:
import numpy as np
class Perceptron:
def __init__(self, learning_rate=0.01