Cox回归与Cox比例风险回归模型 Python实现

252 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python的lifelines库实现Cox回归和Cox比例风险回归模型,用于生存分析。通过拟合模型、估计系数、绘制生存曲线图、预测部分风险和生存函数,分析预测因素对生存时间的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cox回归与Cox比例风险回归模型 Python实现

Cox回归(Cox proportional hazards regression)是一种常用的生存分析方法,用于分析事件发生时间与预测因素之间的关系。Cox比例风险回归模型是Cox回归的一种特例,通过估计预测因素对风险比例的影响来推断其对生存时间的影响程度。本文将介绍如何使用Python实现Cox回归和Cox比例风险回归模型。

首先,我们需要导入所需的库:

import pandas as pd
import numpy as np
from lifelines import CoxPHFitter

接下来,我们准备用于建模的数据。这里使用一个示例数据集,其中包含了一些患者的生存时间、事件状态以及一些预测因素。数据集可以是一个包含这些信息的CSV文件,也可以是一个Pandas DataFrame对象。假设我们的数据集如下所示:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值