使用R语言查看ARIMA模型的拟合系数和标准误
ARIMA(自回归积分移动平均)模型是一种常用的时间序列分析方法,用于预测和建模时间序列数据。在R语言中,我们可以使用arima()
函数来拟合ARIMA模型,并通过coef()
函数查看拟合系数,通过summary()
函数查看每个系数的标准误。
以下是一个示例,展示如何拟合ARIMA模型并查看拟合系数和标准误:
# 导入时间序列数据
data <- c(28, 12, 15, 20, 18, 22, 25, 28, 33, 30, 36, 40, 45, 42, 38, 35, 32, 30, 28, 25)
# 拟合ARIMA模型
model <- arima(data, order = c(1, 0, 1))
# 查看拟合系数
coefficients <- coef(model)
print(coefficients)
# 查看每个系数的标准误
se <- summary(model)$coef[, "Std. Error"]
print(se)
在这个示例中,我们使用一个简单的时间序列数据 data
,包含了20个观测值。我们选择了一个ARIMA(1, 0, 1)模型进行拟合,其中1代表自回归§阶数,0代表积分(d)阶数,1代表移动平均