使用R语言查看ARIMA模型的拟合系数和标准误

100 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言对时间序列数据进行ARIMA模型拟合,并展示查看拟合系数及标准误的步骤。通过一个ARIMA(1, 0, 1)模型示例,详细解释了如何运用相关函数获取模型信息,包括自回归、移动平均和常数项的拟合系数及其标准误,强调标准误对于评估估计值可靠性的意义。" 111744936,10294400,微信小程序自定义组件:圆形进度条,"['微信小程序', '自定义组件', '进度条', 'canvas绘图']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言查看ARIMA模型的拟合系数和标准误

ARIMA(自回归积分移动平均)模型是一种常用的时间序列分析方法,用于预测和建模时间序列数据。在R语言中,我们可以使用arima()函数来拟合ARIMA模型,并通过coef()函数查看拟合系数,通过summary()函数查看每个系数的标准误。

以下是一个示例,展示如何拟合ARIMA模型并查看拟合系数和标准误:

# 导入时间序列数据
data <- c(28, 12, 15, 20, 18, 22, 25, 28, 33, 30, 36, 40, 45, 42, 38, 35, 32, 30, 28, 25)

# 拟合ARIMA模型
model <- arima(data, order = c(1, 0, 1))

# 查看拟合系数
coefficients <- coef(model)
print(coefficients)

# 查看每个系数的标准误
se <- summary(model)$coef[, "Std. Error"]
print(se)

在这个示例中,我们使用一个简单的时间序列数据 data,包含了20个观测值。我们选择了一个ARIMA(1, 0, 1)模型进行拟合,其中1代表自回归§阶数,0代表积分(d)阶数,1代表移动平均

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值