基于KLM算法的图像序列光流提取MATLAB仿真
光流是计算机视觉中重要的概念,用于描述图像序列中像素在时间上的运动。光流提取是一项关键任务,它可以在许多应用中发挥重要作用,如运动估计、目标跟踪和三维重建。在本文章中,我们将使用MATLAB实现基于KLM(Kanade-Lucas-Tomasi)算法的连续图像光流提取的仿真。
KLM算法是一种经典的基于局部方法的光流估计算法,它基于亮度恒定和空间连续性的假设。下面我们将逐步介绍实现该算法的主要步骤,并提供相应的MATLAB源代码。
步骤1:读取图像序列
首先,我们需要读取输入的图像序列。假设图像序列以文件的形式存储在本地磁盘上,可以使用MATLAB的"imread"函数逐张读取图像,并将其存储在一个图像序列数组中。
% 图像序列路径
imageSequencePath = 'path/to/image/sequence/';
% 读取图像序列
imageFiles